Introduction
Chapter 1. Introduction

- Motivation: Why data mining?
- What is data mining?
- Data Mining: On what kind of data?
- Data mining functionality
- Are all the patterns interesting?
- Classification of data mining systems
- Data Mining Task Primitives
- Integration of data mining system with a DB and DW System
- Major issues in data mining
Why Data Mining?

- The Explosive Growth of Data: from terabytes to petabytes
 - Data collection and data availability
 - Automated data collection tools, database systems, Web, computerized society
 - Major sources of abundant data
 - Business: Web, e-commerce, transactions, stocks, …
 - Science: Remote sensing, bioinformatics, scientific simulation, …
 - Society and everyone: news, digital cameras,
- We are drowning in data, but starving for knowledge!
- “Necessity is the mother of invention”—Data mining—Automated analysis of massive data sets
Evolution of Database Technology

- **1960s:**
 - Data collection, database creation, IMS and network DBMS

- **1970s:**
 - Relational data model, relational DBMS implementation

- **1980s:**
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)

- **1990s:**
 - Data mining, data warehousing, multimedia databases, and Web databases

- **2000s**
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration) and global information systems
What Is Data Mining?

- Data mining (knowledge discovery from data)
 - Extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) patterns or knowledge from huge amount of data
- Data mining: a misnomer?
 - Knowledge mining from data
- Alternative names
 - Knowledge discovery (mining) in databases (KDD), knowledge extraction, data/pattern analysis, data archeology, business intelligence, etc.
Why Data Mining?—Potential Applications

- Data analysis and decision support
 - Market analysis and management
 - Target marketing, customer relationship management (CRM), market basket analysis, cross selling, market segmentation
 - Risk analysis and management
 - Forecasting, customer retention, improved underwriting, quality control, competitive analysis
 - Fraud detection and detection of unusual patterns (outliers)
- Other Applications
 - Text mining (news group, email, documents) and Web mining
 - Stream data mining
 - Bioinformatics and bio-data analysis
Ex. 1: Market Analysis and Management

- Where does the data come from?—Credit card transactions, loyalty cards, discount coupons, customer complaint calls, plus (public) lifestyle studies
- Target marketing
 - Find clusters of “model” customers who share the same characteristics: interest, income level, spending habits, etc.,
 - Determine customer purchasing patterns over time
- Cross-market analysis—Find associations/co-relations between product sales, & predict based on such association
- Customer profiling—What types of customers buy what products (clustering or classification)
- Customer requirement analysis
 - Identify the best products for different customers
 - Predict what factors will attract new customers
- Provision of summary information
 - Multidimensional summary reports
 - Statistical summary information (data central tendency and variation)
Ex. 2: Corporate Analysis & Risk Management

- Finance planning and asset evaluation
 - cash flow analysis and prediction
 - contingent claim analysis to evaluate assets
 - cross-sectional and time series analysis (financial-ratio, trend analysis, etc.)
- Resource planning
 - summarize and compare the resources and spending
- Competition
 - monitor competitors and market directions
 - group customers into classes and a class-based pricing procedure
 - set pricing strategy in a highly competitive market
Ex. 3: Fraud Detection & Mining Unusual Patterns

- **Approaches:** Clustering & model construction for frauds, outlier analysis
- **Applications:** Health care, retail, credit card service, telecomm.
 - *Auto insurance:* ring of collisions
 - *Money laundering:* suspicious monetary transactions
 - *Medical insurance*
 - Professional patients, ring of doctors, and ring of references
 - Unnecessary or correlated screening tests
 - *Telecommunications: phone-call fraud*
 - Phone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm
 - *Retail industry*
 - Analysts estimate that 38% of retail shrink is due to dishonest employees
 - *Anti-terrorism*
Knowledge Discovery (KDD) Process

- Data mining—core of knowledge discovery process

Diagram:
- Data Cleaning
- Data Integration
- Data Warehouse
- Task-relevant Data
- Selection
- Data Mining
- Pattern Evaluation

Data Mining: Concepts and Techniques
KDD Process: Several Key Steps

- Learning the application domain
 - relevant prior knowledge and goals of application
- Creating a target data set: data selection
- **Data cleaning** and preprocessing: (may take 60% of effort!)
- **Data reduction and transformation**
 - Find useful features, dimensionality/variable reduction, invariant representation
- Choosing functions of data mining
 - summarization, classification, regression, association, clustering
- Choosing the mining algorithm(s)
- **Data mining**: search for patterns of interest
- **Pattern evaluation and knowledge presentation**
 - visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge
Increasing potential to support business decisions

Data Mining and Business Intelligence

End User

Business Analyst

Data Analyst

DBA

Data Sources

Data Preprocessing/Integration, Data Warehouses

Data Exploration

Statistical Summary, Querying, and Reporting

Data Mining

Information Discovery

Data Presentation

Visualization Techniques

Decision Making

Increasing potential to support business decisions

Paper, Files, Web documents, Scientific experiments, Database Systems
Why Not Traditional Data Analysis?

- Tremendous amount of data
 - Algorithms must be highly scalable to handle such as tera-bytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications
Data Mining: On What Kinds of Data?

- Database-oriented data sets and applications
 - Relational database, data warehouse, transactional database
- Advanced data sets and advanced applications
 - Data streams and sensor data
 - Time-series data, temporal data, sequence data (incl. bio-sequences)
 - Structure data, graphs, social networks and multi-linked data
 - Object-relational databases
 - Heterogeneous databases and legacy databases
 - Spatial data and spatiotemporal data
 - Multimedia database
 - Text databases
 - The World-Wide Web
Data Mining Functionalities

- Multidimensional concept description: Characterization and discrimination
 - Generalize, summarize, and contrast data characteristics, e.g., dry vs. wet regions
- Frequent patterns, association, correlation vs. causality
 - Diaper \rightarrow Beer [0.5%, 75%] (Correlation or causality?)
- Classification and prediction
 - Construct models (functions) that describe and distinguish classes or concepts for future prediction
 - E.g., classify countries based on (climate), or classify cars based on (gas mileage)
 - Predict some unknown or missing numerical values
Data Mining Functionalities (2)

- Cluster analysis
 - Class label is unknown: Group data to form new classes, e.g., cluster houses to find distribution patterns
 - Maximizing intra-class similarity & minimizing interclass similarity
- Outlier analysis
 - Outlier: Data object that does not comply with the general behavior of the data
 - Noise or exception? Useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - Trend and deviation: e.g., regression analysis
 - Sequential pattern mining: e.g., digital camera \rightarrow large SD memory
- Periodicity analysis
- Similarity-based analysis
- Other pattern-directed or statistical analyses
Are All the “Discovered” Patterns Interesting?

- Data mining may generate thousands of patterns: Not all of them are interesting
 - Suggested approach: Human-centered, query-based, focused mining
- **Interestingness measures**
 - A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
- **Objective vs. subjective interestingness measures**
 - **Objective**: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - **Subjective**: based on user’s belief in the data, e.g., unexpectedness, novelty, actionability, etc.
Major Issues in Data Mining

- **Mining methodology**
 - Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
 - Performance: efficiency, effectiveness, and scalability
 - Pattern evaluation: the interestingness problem
 - Incorporation of background knowledge
 - Handling noise and incomplete data
 - Parallel, distributed and incremental mining methods
 - Integration of the discovered knowledge with existing one: knowledge fusion

- **User interaction**
 - Data mining query languages and ad-hoc mining
 - Expression and visualization of data mining results
 - Interactive mining of knowledge at multiple levels of abstraction

- **Applications and social impacts**
 - Protection of data security, integrity, and privacy
Summary

• Data mining: Discovering interesting patterns from large amounts of data
• A natural evolution of database technology, in great demand, with wide applications
• A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
• Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
• Data mining systems and architectures
• Major issues in data mining
Conferences and Journals on Data Mining

- **KDD Conferences**
 - ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases and Data Mining (**KDD**)
 - SIAM Data Mining Conf. (**SDM**)
 - (IEEE) Int. Conf. on Data Mining (**ICDM**)
 - Conf. on Principles and practices of Knowledge Discovery and Data Mining (**PKDD**)
 - Pacific-Asia Conf. on Knowledge Discovery and Data Mining (**PAKDD**)

- **Other related conferences**
 - ACM SIGMOD
 - VLDB
 - (IEEE) ICDE
 - WWW, SIGIR
 - ICML, CVPR, NIPS

- **Journals**
 - Data Mining and Knowledge Discovery (DAMI or DMKD)
 - IEEE Trans. On Knowledge and Data Eng. (TKDE)
 - KDD Explorations
 - ACM Trans. on KDD
Recommended Reference Books

- U. Fayyad, G. Grinstein, and A. Wierse, Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, 2001
- P.-N. Tan, M. Steinbach and V. Kumar, Introduction to Data Mining, Wiley, 2005
- S. M. Weiss and N. Indurkhya, Predictive Data Mining, Morgan Kaufmann, 1998