

R15 COURSE OUTCOMES

II EEE I Semester

A13012	MATHEMATICS-IV
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C211.1	Acquire the knowledge of Special functions.
C211.2	Work with the functions of complex variables and evaluation of complex differentiation.
C211.3	Acquire the knowledge of complex power series and integration.
C211.4	Work with contour integration and evaluation of real definite integrals
C211.5	Acquire the knowledge of evaluating of conformal mapping and bilinear transformations.

A13401	ELECTRONIC DEVICES & CIRCUITS
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C212.1	Understand different types of diodes, operation and their characteristics.
C212.2	Apply the concepts of semiconductors for circuits like rectifiers, filters.
C212.3	Analyze the operation and characteristics of BJT and FET.
C212.4	Examine the DC bias circuitry of BJT and FET, design biasing circuits using diodes and transistors.
C212.5	Assess the transistor application circuits like amplifier.

A13204	NETWORK THEORY
	After the completion of this course, a student must demonstrate the knowledge and ability to
C213.1	Understand the concepts of three phase circuits for both balanced and unbalanced loads
C213.2	Apply transient response analysis on RLC circuits with initial conditions for both DC and AC excitations.
C213.3	Analyze network functions – pole-zero plots – and obtain time response from pole-zero plots.
C213.4	Evaluate impedance, admittance, and transmission and hybrid parameters for two port networks.
C213.5	Design low pass, high pass, band pass and band stop prototype filters.

A13205	ELECTRO MAGNETIC FIELDS
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C214.1	Understand the concepts of electric field, magnetic field electric
	potential.
C214.2	Explain the Properties and behavior of conductors, dielectrics,
	capacitance in electric fields.
C214.3	Apply Biot Savart's law and Ampere circuital law for evaluating
	magnetic field intensity and current density.
C214.4	Examine Lorentz force equation to electromagnetic systems for the
	transfer of power and development of torque.
C214.5	Evaluate inductance in electric fields and apply Maxwell equations
	for time varying fields.

A13206	ELECTRICAL MACHINES- I
	After the completion of this course, a student must demonstrate the knowledge and ability to
C215.1	Identify different parts of D.C machine and their working.
C215.2	Analyze D.C. machines on load and no load.
C215.3	Understand Principle of operation of a D.C Motor and Torque equation
C215.4	Categorise speed control methods of DC Motors
C215.5	Analyze Various losses, different test in D.C Machines and Calculations of their efficiency.

A13011	ENVIRONMENTAL SCIENCE
	After the completion of this course, a student must demonstrate the knowledge and ability to
C216.1	Understand the importance of ecological balance for sustainable development.
C216.2	Understand the impacts of developmental activities and mitigation measures.
C216.3	Understand the variety of living organisms and the need to conserve them.
C216.4	Sensitization on the ill effects of development and possible solutions to prevent it.
C216.5	Understand the environmental policies and regulations.

A 13281	BASIC SIMULATION TOOLS LAB
A13201	DASIC SIMULATION TOOLS LAD
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C217.1	Understand the basic commands & operators of MATLAB & PSPICE
C217.2	Develop the program for matrix multiplication & inversion in MATLAB
C217.2	
C217.3	Analyze the series RL, RC & RLC circuits using Simulink for DC & DC
	excitation using MATLAB.
C217.4	Design DC network and single phase half wave & full wave rectifier using
	PSPICE
C217 5	Analyze the transient response of series RL RC RLC circuits for DC $\&$
C217.3	A g i i papiar
	AC excitation using PSPICE.

A13282	ELECTRICAL CIRCUITS LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C218.1	Design circuit and conduct experiments for verification of electrical
	theorems such as Thevenin's, Norton's theorem, Superposition theorem
	etc.
C218.2	Find Resonance in series and parallel R, L, C Circuits& locus concepts
	practically.
C218.3	Examine Self inductance, Mutual inductance and Coefficient of
	coupling and Analyze RMS, Average Value, Form Factor and Peak
	Factor of Complex wave.
C218.4	Determine two port parameters practically.
C218.5	Measure Active power & Reactive power for star and delta connected
	balanced loads.

II EEE II Semester

14407	ELECTRONIC CIRCUITS
	After the completion of this course, a student must demonstrate the knowledge and ability to
C221.1	Design and analyze small signal amplifier circuits applying the
	biasing techniques learnt earlier.
C221.2	Cascade different amplifier configurations to obtain the required
	overall specifications like Gain, Bandwidth, Input and Output
	interfacing Impedances.
C221.3	Design and realize different classes of Power Amplifiers useable for
	audio and Radio applications.
C221.4	Utilize the Concepts of negative feedback to improve the stability
	of amplifiers and positive feedback to generate sustained
	oscillations.
c221.5	Design and realize different classes of tuned amplifiers useable for
	audio and Radio applications.

A14408	SWITCHING THEORY & LOGIC DESIGN
	After the completion of this course, a student must demonstrate the knowledge and ability to
C222.1	Manipulate numeric information in different forms, e.g. different
	bases, signed integers, various codes such as ASCII, Gray and
	BCD.
C222.2	Manipulate simple Boolean expressions using the theorems and
	postulates of Boolean algebra and to minimize combinational
	functions.
C222.3	Design and analyze small combinational circuits and to use
	standard combinational functions/building blocks to build larger
	more complex circuits.
C222.4	Design and analyze small sequential circuits and devices and to use
	standard sequential functions/building blocks to build larger more
	complex circuits.
C222.5	To develop the state diagrams with the knowledge of Mealy and
	Moore circuits and algorithmic state machines for binary
	multipliers.

A14311	FLUID MECHANICS AND HYDRAULIC MACHINES
	After the completion of this course, a student must demonstrate the knowledge and ability to
C223.1	Understand the basic mechanics of fluid statics.
C223.2	Understand the principles of flow and energy momentum equations.
C223.3	Analyze the losses in pipe flow, boundary layer, separation of
	flows, forces on different vanes and quantify the flow of fluid in flow measurement instruments.
C223.4	Understand the working of hydraulic machinery and analyze their characteristic curves.
C223.5	Appreciate the working principles of pumps and their applications.

A14208	ELECTRICAL MACHINES – II
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C224.1	Understand the construction and working operations of single phase
	transformers
C224.2	Distinguish different types of three phase transformers and able to
	obtain the load sharing of transformers
C224.3	Analyze the performance of induction motors and effect of
	harmonics.
C224.4	Compare the operation of induction motor using different speed
	control methods and analyze the circle diagram.
C224.5	Infer the performance of single phase induction motors

A14209	POWER SYSTEMS-I
	After the completion of this course, a student must demonstrate the knowledge and ability to
C225.1	Explain about electric power generation, selection of power plants,
	layout and working of steam power stations, gas and nuclear power stations.
G225.2	
C225.2	Classify DC and AC Distribution system, voltage drop calculations
	etc.
C225.3	Sketch Substation layouts, different types of substations (Indoor&
	outdoor), like GI substations and design aspects of substation.
C225.4	Analyze power factor and voltage control.
C225.5	Infer load curve, plant usage and various types of tariff

A14210	CONTROL SYSTEMS
	After the completion of this course, a student must demonstrate the knowledge and ability to
C226.1	Understand the basic concepts of control system and develop the mathematical model of simple electrical and mechanical systems.
C226.2	Apply the transient response of first and second order systems through time domain specifications.
C226.3	Sketch root locus technique to know the conditional stability of the system.
C226.4	Calculate the relative stability of the systems with the help of frequency domain indices and design compensators to meet the desired specifications of the systems.
C226.5	Analyze systems using modern control theory through state space analysis.

A14283	ELECTRICAL MACHINES – I LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C227.1	Identify losses, Output and efficiency of dc motors
C227.2	Identify losses, Output and efficiency of dc generators
C227.3	Apply speed control methods on DC motors.
C227.4	Analyze the magnetization characteristics of DC shunt generator to determine its parameters.
C227.5	Infer the efficiencies of D.C Series Machines.

A14484	ELECTRONIC DEVICES AND CIRCUITS LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C228.1	Understand internal physical behavior of PN junction diode, resistor and capacitor
C228.2	Interpret the breakdown mechanisms in semiconductors so as to construct Zener voltage regulator used in regulated power supplies.
C228.3	Analyze various rectifiers and filter circuits used in regulated power supplies.
C228.4	Contrast the operation and characteristics of Bipolar Junction Transistor, which can be used in the design of amplifiers
C228.5	Analyze the characteristics of FET And UJT

III EEE I Semester

A15017	MANAGERIAL ECONOMICS AND FINANCIAL
	After the completion of this course, a student must demonstrate the knowledge and ability to
C311.1	Analyze the scope of managerial economics.
C311.2	Apply managerial tools and techniques to attain optimal decisions.
C311.3	Analyze how production function is carried out to achieve maximum output.
C311.4	Analyze changing business environment in post liberalization scenario.
C311.5	Evaluate and interpret the financial statements to make informed decisions.

A15212	POWER ELECTRONICS
	After the completion of this course, a student must demonstrate the knowledge and ability to
C312.1	Understand various power electronic devices and their commutation procedure.
C312.2	Illustrate the operation of various phase-controlled converters.
C312.3	examine the operation of AC-AC Converters
C312.4	categorize the operation of various DC-DC converters
C312.5	analyze the operation of DC-AC converters

A15213	POWER SYSTEMS – II
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C313.1	Understand and discuss the methods of finding transmission line
	parameters & modeling of lines and their performance.
C313.2	Apply performance criteria to models of short, medium and long
	lines, Discuss the models in terms of A, B, C, D parameters.
C313.3	Examine the transient phenomenon on transmission lines
C313.4	Analyze mechanical design, overview of line supports, insulators,
	sag& Tension calculations, Corona & Radio Interference.
C313.5	Design cables, capacitance of single core & 3 core belted cables, IR values and voltage stress.

A15214	ELECTRICAL MACHINES-III
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C314.1	Understand the construction and principle of operation of
	synchronous machine. Armature reaction, load characteristics,
	harmonics in generating emf etc.
C314.2	Solve regulation of synchronous generator using various methods.
C314.3	Apply the concept of Parallel operation, load sharing, change of
	excitation& prime-mover input to alternators
C314.4	Analyse the principle of operation of synchronous motor and
	working principle of a synchronous condenser in the system, power
	circle.
C214.5	Categorize different special machines and their performances.

OPEN ELECTIVES

A15218	NON-CONVENTIONAL ENERGY SOURCES
	After the completion of this course, a student must demonstrate the knowledge and ability to
C315.1	Realize the importance of renewable energy sources for energy planning.
C315.2	Understand the value of solar energy potential and exploit the solar energy for real world applications.
C315.3	Restate the potential of wind energy, types of wind mills, performance characteristics and Betz criteria.
C315.4	Analyze the potential of both tidal and ocean thermal energies and learn the extraction methods.
C315.5	Identify the potential of Geothermal, Bio-mass energies and learn relevant extraction methods.

A15219	ENERGY MANAGEMENT
	After the completion of this course, a student must demonstrate the knowledge and ability to
C316.1	understand the process of planning, initiating energy management program, promoting, monitoring energy conservation methods in any system.
C316.2	evaluate energy potential by conducting a systematic search of energy saving opportunities in different energy conservation schemes.
C316.3	exploit the energy saving opportunities in an industry through efficient lighting management and power factor control of the electrical gadgets.
C316.4	Examine the qualities and functions of Energy manager and language of energy manager.
C316.5	Analyze economics through various evaluation methods such as depreciation, time value of money, risk and replacement analysis.

A15215	HIGH VOLTAGE ENGINEERNG
	After the completion of this course, a student must demonstrate the knowledge and ability to
C316.1	Understand the concepts of stress Electric Stress, Surge Voltages and their distribution.
C316.2	examine breakdown phenomenon in gases, liquids and solid dielectric media.
C316.3	Apply the concepts of generation of high voltages and currents in power systems
C316.4	Examine the causes of over voltages in power systems concepts of insulation coordination, and DC measurements.
C316.5	Assess high voltage testing techniques of power apparatus

A15285	ELECTRICAL MACHINES – II LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C317.1	understand the basic working principle of a transformer; obtain the equivalent circuit parameters, estimate efficiency & regulation at various loads of $1-\Phi$ transformers.
C317.2	Apply load sharing concepts of transformers & conversion of 3- Φ to 2- Φ supply for transformers
C317.3	examine the equivalent circuit parameters of a single phase induction motor, determine the performance characteristics and efficiency by direct and indirect methods of three phase induction motor.
C317.4	analyze the regulation of an alternator by various methods at different power factors.
C317.5	Investigate synchronous motor performance curves at various power factors and field currents.

A15286	CONTROL SYSTEMS AND SIMULATION LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C327.1	Examine the time response of second order systems, Synchros, and truth tables verification by PLC.
C327.2	Find the transfer function of AC servomotor and DC servomotor practically.
C327.3	Identify the transfer function of DC motor, DC generator practically.
C327.4	Analyze magnetic amplifier characteristics.
C327.5	Examine stability analysis through bode, Nyquist and root locus plots using MATLAB

III EEE II Semester

A16421	IC APPLICATIONS
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C321.1	Ability to elucidate the characteristics of ideal and practical
	operational amplifier.
C321.2	Apply knowledge of mathematics to analyze operational amplifier
	in inverting and non-inverting configuration modes and develop the
	applications of IC 741.
C321.3	Examine and infer the functionality of 555 timer and 565 PLL
	Integrated circuits and interpret the concepts and features of Analog
	to Digital and Digital to Analog converter in Integrated circuits
	form.
C321.4	Evaluate the various Combinational and sequential logic using
	74XX Digital Integrated circuits.
C321.5	

A16221	ELECTRICAL MEASUREMENTS AND MEASURING INSTRUMENTS
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C322.1	Discuss about different types of measuring instruments and error
	compensations.
C322.2	Understand the operation of DC Crompton potentiometer, compare
	the CT and PT with phasor diagram.
C322.3	Apply the concepts of power and energy measurement by using
	wattmeter and energy meter.
C322.4	Outline the concept of DC and AC bridges for the measurement of
	resistance, inductance & capacitance
C322.5	Analyze the concepts of transducers and cathode ray oscilloscopes.

A16222	POWER SEMICONDUCTOR DRIVES
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C323.1	Understand the concepts of the dynamics of electric drives, such as
	speed torque characteristics etc. Able to review speed control of
	different types of DC drives using single phase and three phase
	controlled converter.
C323.2	Analyze four quadrant operations with controlled converter speed
	control of DC drives.
C323.3	Examine four quadrant operations with Chopper speed control of
	DC drives.
C323.4	Assess speed control of induction motor using stator voltage and
	stator frequency variations.
C323.5	Assess speed control of synchronous motor, using voltage source
	inverter/current source inverter, Cyclo converter, PWM, VFI.

A16223	SWITCHGEAR AND PROTECTION
	After the completion of this course, a student must demonstrate the knowledge and ability to
C324.1	Describe working of circuit breaker and various types of circuit breakers.
C324.2	Outline different circuit breakers and their application in power systems.
C324.3	Use the principle of operation of over current, directional, differential and distance relays in relay design.
C324.4	Analyze the protection of alternators, transformers, bus-bars.
C324.5	Assess the concept of neutral grounding and protection from surge.

A16227	ENERGY AUDITING AND CONSERVATION
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C325.1	Realize the need for energy auditing and conservation. Get
	awareness on types of energy audit; represent energy flows and
	energy consumption in tabular and graphical methods.
C325.2	Understand energy saving opportunities in energy efficient motors
	and power factor improvement methods.
C325.3	Exploit energy auditing and conservation opportunities with
	respect to energy efficient buildings.
C325.4	Analyze economic viability with respect to real world problems
	using depreciation methods.
C325.5	Prioritize energy conservation opportunities in boilers, heat
	pumps, cooling systems, compressors and fans.

A16228	PRINCIPLES OF ELECTRIC POWER UTILIZATION
	After the completion of this course, a student must demonstrate the knowledge and ability to
C326.1	Understand terms and concepts of illumination
C326.2	Apply the concepts of different electric lamps and good lighting Practices for artificial lighting systems.
C326.3	Analyze the methods of electric heating and welding
C326.4	Categorize the concepts of different electric traction systems and existing traction system in India.
C326.5	Investigate the mechanics of train movement

A16224	RENEWABLE ENERGY SOURCES
	After the completion of this course, a student must demonstrate the
	knowledge and admity to
C327.1	Understand the concept of solar energy, analysis and applications
	solar energy.
C327.2	Examine the Environmental impact of solar power, solar plate
	collectors, and solar energy storage
C327.3	Outline the basic principles of wind, bio-mass and their use for IC engines.
C327.4	Discuss the principles of geo-thermal, OTEC energy sources.
C327.5	Analyze the methods of direct energy conversions, energy storage
	and Environmental effects of energy and conversion systems.

A16287	POWER ELECTRONICS & SIMULATION LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C328.1	Examine the characteristics of SCR, MOSFET, & IGBT, and analyze triggering circuits
C328.2	Analyze input and output waveforms of AC-DC converters.
C328.3	Identify input and output waveforms of AC-AC converters
C328.4	Identify input and output waveforms of DC-DC Converters
C328.5	Design converters and inverters using p-spice.

A16090	ADVANCED COMUNICATION SKILLS LAB
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C329.1	Listen to the speakers attentively, accurately and precisely to
	understand and respond appropriately in different contexts.
C329.2	Analyze and communicate intelligently while speaking with
	professionalism and enact different roles; engage themselves in
	preparing, organizing and delivering speeches, presentations etc.
C329.3	Demonstrate command over English vocabulary and develop the ability to read intelligently and imaginatively for comprehending different contexts.
C329.4	Master the mechanics of writing & practice it as a process and communicate the ideas relevantly and coherently.
C329.5	Gain employability skills; develop leadership qualities and problem solving skills to apply them for careers at advanced levels in a wide range of English and enrich themselves to meet industrial needs.

MP-I	INDUSTRY ORIENTED MINI PROJECT
	A student will be able to
C330.1	Understand various requirements and procedures of industry
C330.2	Make links across different core areas of knowledge.
C330.3	Generate, develop and evaluate ideas.
C330.4	Effectively work as a team.
C330.5	Enhance verbal and writing skills.

IV EEE I Semester

A17231	COMPUTER METHODS IN POWER SYSTEMS
	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C411.1	Compute Y-bus and Z-bus matrices
C411.2	Apply the concepts of load flow studies in power systems.
C411.3	Analyze faults using for unit system
C411.4	Examine steady state stability of power system.
C411.5	Investigate transient stability of power system.

A17233	ELECTRICAL DISTRIBUTION SYSTEMS
	After the completion of this course, a student must demonstrate the
<u></u>	
C412.1	Distinguish between transmission and distribution systems,
	classification of loads and their characteristics.
C412.2	Understand design considerations of distribution feeders and sub-
	stations
C412.3	Compute voltage drop and power loss in feeders.
C412.4	Apply concepts of protection and coordination to distribution
	systems
C412.5	Examine the power factor improvement and voltage control

A17230	POWER SYSTEM OPERATION & CONTROL
	After the completion of this course, a student must demonstrate the knowledge and ability to
C413.1	Understand the economic operation of power systems.
C413.2	compute optimal loading of generators for the demand.
C413.3	Analyze modeling of turbines and automatic controllers.
C413.4	Apply the knowledge of single area and two area load frequency control.
C413.5	Examine reactive power control and compensating equipments.

A17232	OPTIMIZATION METHODS
	After the completion of this course, a student must demonstrate the knowledge and ability to
C414.1	Understand the need of optimization of engineering systems and
	classical optimization techniques.
C414.2	Restate optimization methods for electrical and electronics
	engineering problems.
C414.3	Apply unconstrained optimization and transportation problem.
C414.4	Examine the concept of constrained nonlinear programming.
C414.5	Investigate the concept of dynamic programming.

A17238	ELECTRIC VEHICLES AND HYBRID VEHICLES
	After the completion of this course, a student must demonstrate the knowledge and ability to
C415.1	Understand the components of electric vehicles and fundamentals of electric vehicles.
C415.2	Apply the basic concepts of batteries in the design of electric vehicles
C415.3	Differentiate the characteristics of various electric motors which can be used in electric vehicles
C415.4	Analyze the transmission of the drive system and the components of transmission.
C415.5	Design the basic parameters of Electric and hybrid vehicles.

A17239	ENERGY STORAGE SYSTEMS
	After the completion of this course, a student must demonstrate the knowledge and ability to
C416.1	Understand Electrical Energy Storage Technologies.
C416.2	Outline the needs for electric energy storage
C416.3	Analyze the characteristics and features of energy from various sources.
C416.4	Classify various types of energy storage and various devices used for the purpose.
C416.5	Apply the same concepts to real time solutions like electric vehicles, smart Grid and SCADA etc.

A17288	ELECTRICAL MEASUREMENTS LAB
	After the completion of this course, a student must demonstrate the knowledge and ability to
C417.1	Calibrate voltmeters, ammeters, single phase energy meter.
C417.2	Analyze true and actual values of potentiometer & Power factor meter.
C417.3	verify dielectric property of oil insulation, Analyze the measuring parameters of Anderson & Schering bridge.
C417.4	Test displacement, force, strain, inductance, capacitance & resistance using concepts of electricity.
C417.5	Examine the output of turns ratio and ratio error of CT.

A17493	MICROPROCESSOR AND INTERFACING LAB
C418.1	After the completion of this course, a student must demonstrate the
	knowledge and ability to
C418.2	Understand and implement the basic programs of microprocessor
	(8086).
C418.3	analyze and interpret the interfacing concept of microprocessor (8086)
	with other Processors.
C418.4	illustrate and show the different programs using Microcontroller
	(8051)
C418.5	implement and verify the interfacing concepts with 8051
	microcontroller.

IV EEE II Semester

A18240	UTILIZATION OF ELECTRICAL ENERGY
	After the completion of this course, a student must demonstrate the knowledge and ability to
C421.1	Understand illumination methods & solutions for illumination.
C421.2	Apply principles of electrical heating &welding and acquire skills to solve problems.
C421.3	Categorize electrical drives, their characteristics& applications.
C421.4	Analyze features of electric traction movement.
C421.5	Investigate the effects of varying acceleration and braking retardation, adhesive weight and coefficient of adhesion.

A18241	FUNDAMENTALS OF HVDC AND FACTS DEVICES
C422.1	After the completion of this course, a student must demonstrate the knowledge and ability to
C422.2	Understand the concepts of DC transmission
C422.3	Analyze converters and their control and analyze Harmonics, Filters and Reactive Power Control
C422.4	Apply the basic principles of different types of facts controllers and their characteristics.
C422.5	Categorize types of shunt compensation.
C422.6	Investigate the usage of series compensation.

A18244	EHVAC TRANSMISSION
C423.1	After the completion of this course, a student must demonstrate the knowledge and ability to
C423.2	Understand the necessity, merits and demerits of EHVAC transmission lines and mechanical aspects.
C423.3	Use the concepts of voltage gradient & amp; effects of corona.
C423.4	Apply the measurement of electrostatic fields and their effects on human & animals.
C423.5	Analyze the lightning stroke mechanism and lightning protection techniques.
C423.6	Categorize the voltage control methods and techniques for compensation.

TS	TECHNICAL SEMINAR
	A student will be able to
C424.1	Choose suitable up to date topic of his choice by doing survey of literature
C424.2	Make an in depth study of the topic and analyze the subject
C424.3	Scrutinize the subject creating newness in its application with scope for future work.
C424.4	Prepare the seminar report and present it in a befitting manner.

CVV	COMPREHENSIVE VIVA-VOCE
	A student will be able to
C425.1	Relate the technical knowledge of core courses of electrical and electronics engineering programme.
C425.2	Apply the knowledge from courses learnt in the curriculum to the relevant industry.
C425.3	Examine his confidence to face real interviews in their career.
C425.4	Apply the knowledge from courses learnt in the curriculum to the relevant industry.

MP-II	MAJOR PROJECT
	A student will be able to
C426.1	Make links across different core areas of knowledge.
C426.2	Generate, develop and evaluate ideas for the benefit of society
C426.3	Effectively work as a team.
C426.4	Enhance verbal and writing skills.