Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NBA \& NAAC, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad) Aziz Nagar, C.B.Post, Hyderabad -500075

COURSE HANDOUT
MATHEMATICS-I
(MATRICES AND CALCULUS)

Course Overview:

This course provides mathematical knowledge required to analyze problems encountered in engineering. In this course, the students are acquainted with matrices, solution of system of linear equations, eigen values and eigen vectors, sequence and series, beta and gamma functions, mean value theorems and functions of several variables.

Course Objectives:

1. Determine the rank of the matrix and investigate the solution of system of equations by applying the concepts of consistency.
2. Concepts of Eigen values and Eigen vectors and the nature of quadratic form by finding Eigen values.
3. Concepts of sequence and series and identifying their nature by applying some tests.
4. Mean value theorems geometrical interpretation and their application to the mathematical problems,

Evaluation of improper integrals using Beta and Gamma functions.
5. Partial differentiation, Total derivative and finding maxima minima of functions of several variables.

Course Outcomes:

After learning the contents of this course the students must able to:

1. Write the matrix representation of system of linear equations and identify the consistency of the system of equations.
2. Find the Eigen values and Eigen vectors of the matrix and discuss the nature of the quadratic form.
3. Analyse the convergence of sequence and series.
4. Discuss the applications of mean value theorems to the mathematical problems, Evaluation of integrals using Beta and Gamma functions.
5. Examine the extrema of functions of two variables with/without constraints.

Course Syllabus

UNIT-I: Matrices and Linear System of Equations

Matrices and Linear system of equations: Real matrices - Symmetric, Skew - symmetric and Orthogonal. Complex matrices: Hermitian, Skew - Hermitian and Unitary. Rank - Echelon form, Normal form. Solution of linear systems - Gauss Elimination method, Gauss-Jordan method \& LU Decomposition method.

UNIT-II: Eigen Values and Eigen Vectors

Eigen values, Eigen vectors - properties, Cayley-Hamilton theorem (without Proof) - Inverse and powers of a matrix by Cayley-Hamilton theorem - Diagonolization of matrix - Quadratic forms: Reduction to canonical form, nature, index and signature.

UNIT-III: Sequences \& Series

Basic definitions of Sequences and series, Convergence and divergence, Ratio test, Comparison test, Cauchy's root test, Raabe's test, Integral test ,Absolute and conditional convergence.

UNIT-IV: Beta \& Gamma Functions and Mean Value Theorems

Gamma and Beta Functions-Relation between them, their properties - evaluation of improper integrals using Gamma / Beta functions. Rolle's theorem, Lagrange's mean value theorem, Cauchy's mean value theorem, Generalized mean value theorem (all theorems without proof) - Geometrical interpretation of mean value theorems.

UNIT-V: Functions of several variables

Partial differentiation and total differentiation, Functional dependence, Jacobian determinant- Maxima and minima of functions of two variables with constraints and without constraints, Method of Lagrange's multipliers.

Text Books:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, $43^{\text {rd }}$ Edition, 2014
2. R.K. Jain, S.R.K. Iyengar, Advanced Engineering Mathematics, Narosa Pulishing, $3^{\text {rd }}$ Edition, 2016
3. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education, Chennai, $29^{\text {th }}$ Reprint, 2017

References:

1. G.B.Thomas, R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, 2002
2. Erwin Kreyszig, Advanced Engineering Mathematics, $9^{\text {th }}$ Edition, John Wiley \& Sons, 2006
3. Michael Greenberg, Advanced Engineering Mathematics, $2^{\text {nd }}$ Edition, Pearson, 2002

UNIT-I: Matrices and Linear System of Equations

Definitions:

Square matrix: A matrix in which the number rows is equal to the number of columns, is called a square matrix. Thus, $A=\left[a_{i j}\right]_{n \times n}$ is a square matrix of order n.
Principal diagonal of a square matrix: Let $A=\left[a_{i j}\right]_{n \times n}$ be a square matrix. The elements of $a_{i j}$ of matrix A for which $i=j$ are called the diagonal elements of A. The line along which the diagonal elements lie is called the principal diagonal of A.
Diagonal matrix: A square matrix in which all non-diagonal elements are zero is called a diagonal matrix. If $d_{1}, d_{2}, \ldots, d_{n}$ are the diagonal elements of a diagonal matrix A, then A is denoted as $A=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$.

Example: $D=\left[\begin{array}{rrr}2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 5\end{array}\right]=\operatorname{diag}(2,-3,5)$
Identity matrix: A diagonal matrix in which each diagonal element is unity i.e., 1 is called an identity matrix or a unit matrix. An identity matrix of order n is denoted by I_{n}.
Example: $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], I_{4}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Upper triangular matrix: A square matrix in which all the elements below the principal diagonal are zero is called an upper triangular matrix.
Example: $U=\left[\begin{array}{rrr}3 & 1 & -2 \\ 0 & 8 & 6 \\ 0 & 0 & -4\end{array}\right]$
Lower triangular matrix: A square matrix in which all the elements above the principal diagonal are zero is called a lower triangular matrix.

Example: $L=\left[\begin{array}{lll}3 & 0 & 0 \\ 5 & 8 & 0 \\ 7 & 9 & 4\end{array}\right]$
Triangular matrix: A square matrix is said to be a triangular matrix if it is either upper triangular matrix or lower triangular matrix.
Transpose of a matrix: The matrix obtained from a given matrix A by interchanging its rows and columns is called the transpose of A and is denoted by A^{T} or A^{\prime}.
Example: If $A=\left[\begin{array}{lll}1 & 2 & 5 \\ 3 & 6 & 9\end{array}\right]$ then $A^{T}=\left[\begin{array}{ll}1 & 3 \\ 2 & 6 \\ 5 & 9\end{array}\right]$
Trace of a matrix: The sum of the principal diagonal elements of a square matrix A is called its trace and is denoted by $\operatorname{tr}(A)$.
Example: The trace of the matrix $A=\left[\begin{array}{ccc}5 & 1 & -2 \\ 1 & 7 & 6 \\ -2 & 6 & -4\end{array}\right]$ is $\operatorname{tr}(A)=5+7-4=8$
Determinant of matrix: The determinant of a square matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is denoted by $\operatorname{det}(A)$
$\operatorname{or}|A|$ and is defined as $|A|=\left|\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right|=a_{11}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|-a_{12}\left|\begin{array}{ll}a_{21} & a_{23} \\ a_{31} & a_{33}\end{array}\right|+a_{13}\left|\begin{array}{ll}a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right|$

$$
=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
$$

Singular and non-singular matrices: A square matrix A is said to be singular if $|A|=0$. If $|A| \neq 0$ then A is said to be non-singular.
Note: A^{-1} exists iff $|A| \neq 0$.
Real matrix: A matrix A is said to be real if every element of A is a real number
$>$ A real square matrix A is said to be Symmetric if $A^{T}=A$
Example: $A=\left[\begin{array}{ccc}3 & 1 & -2 \\ 1 & 0 & 6 \\ -2 & 6 & -4\end{array}\right]$
$>$ A real square matrix A is said to be Skew-Symmetric if $A^{T}=-A$

Example: $A=\left[\begin{array}{ccc}0 & 3 & 5 \\ -3 & 0 & -2 \\ -5 & 2 & 0\end{array}\right]$
Note: The principal diagonal elements of a Skew-symmetric matrix are all zeros.
$>$ A real square matrix A is said to Orthogonal if $A A^{T}=A^{T} A=I$ or $A^{T}=A^{-1}$
Example: $A=\frac{1}{3}\left[\begin{array}{rrr}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$

Properties of Real Matrices:

Property 1: Every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric matrices.
Proof: Let A be any square matrix and $A=P+Q$ where $P=\frac{1}{2}\left(A+A^{T}\right), Q=\frac{1}{2}\left(A-A^{T}\right)$
$\therefore P^{T}=\left[\frac{1}{2}\left(A+A^{T}\right)\right]^{T}=\frac{1}{2}\left(A+A^{T}\right)^{T}=\frac{1}{2}\left(A^{T}+\left(A^{T}\right)^{T}\right)=\frac{1}{2}\left(A+A^{T}\right)=P \quad\left[\because\left(A^{T}\right)^{T}=A\right]$
$\therefore P$ is a symmetric matrix
Now $Q^{T}=\left[\frac{1}{2}\left(A-A^{T}\right)\right]^{T}=\frac{1}{2}\left(A-A^{T}\right)^{T}=\frac{1}{2}\left(A^{T}-\left(A^{T}\right)^{T}\right)=\frac{1}{2}\left(A^{T}-A\right) \quad\left[\because\left(A^{T}\right)^{T}=A\right]$

$$
=-\frac{1}{2}\left(A-A^{T}\right)=-Q
$$

$\therefore Q$ is a skew-symmetric matrix
To prove the sum is unique: If possible, let $A=R+S$ where $R^{T}=R$ and $S^{T}=-S$
Now $P=\frac{1}{2}\left(A+A^{T}\right)=\frac{1}{2}\left(R+S+(R+S)^{T}\right)=\frac{1}{2}\left(R+S+R^{T}+S^{T}\right)=\frac{1}{2}(R+S+R-S)=R$
Similarly, $Q=\frac{1}{2}\left(A-A^{T}\right)=\frac{1}{2}\left(R+S-(R+S)^{T}\right)=\frac{1}{2}\left(R+S-R^{T}-S^{T}\right)=\frac{1}{2}(R+S-R+S)=S$
$\therefore P=R$ and $Q=S$
Thus, every square matrix can be uniquely expressed as the sum of symmetric and skew-symmetric matrices.
Property 2: The inverse and transpose of an orthogonal matrix are orthogonal.
Proof: Let A be an orthogonal matrix $\Rightarrow A A^{T}=A^{T} A=I$
(i) Taking transpose to equation (1), we get $\left(A A^{T}\right)^{T}=\left(A^{T} A\right)^{T}=I^{T}$

$$
\Rightarrow\left(A^{T}\right)^{T} A^{T}=A^{T}\left(A^{T}\right)^{T}=I \quad\left[\because I^{T}=I\right]
$$

$\therefore A^{T}$ is an orthogonal matrix.
(ii) Taking inverse to equation (1), we get $\left(A A^{T}\right)^{-1}=\left(A^{T} A\right)^{-1}=I^{-1}$

$$
\begin{array}{ll}
\Rightarrow\left(A^{T}\right)^{-1} A^{-1}=A^{-1}\left(A^{T}\right)^{-1}=I & {\left[\because I^{-1}=I\right]} \\
\Rightarrow\left(A^{-1}\right)^{T} A^{-1}=A^{-1}\left(A^{-1}\right)^{T}=I & {\left[\because\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}\right]}
\end{array}
$$

$\therefore A^{-1}$ is an orthogonal matrix.
Property 3: If A, B are orthogonal matrices of same order then $A B$ and $B A$ are orthogonal.
Proof: Let A, B be the orthogonal matrices of same order

$$
\begin{equation*}
\Rightarrow A A^{T}=A^{T} A=I \text { and } B B^{T}=B^{T} B=I \ldots . . \text { (1) } \tag{1}
\end{equation*}
$$

(i) Consider $(A B)(A B)^{T}=(A B)\left(B^{T} A^{T}\right)=A\left(B B^{T}\right) A^{T}=A I A^{T}=A A^{T}=I$

Now $\quad(A B)^{T}(A B)=\left(B^{T} A^{T}\right)(A B)=B^{T}\left(A^{T} A\right) B=B^{T} I B=B^{T} B=I$

$$
\begin{equation*}
\text { i.e., }(A B)(A B)^{T}=(A B)^{T}(A B)=I \tag{1}
\end{equation*}
$$

Dept. of Mathematics
$\therefore A B$ is an orthogonal matrix
(ii) Consider $(B A)(B A)^{T}=(B A)\left(A^{T} B^{T}\right)=B\left(A^{T} A\right) B^{T}=B I B^{T}=B B^{T}=I$

Now $\quad(B A)^{T}(B A)=\left(A^{T} B^{T}\right)(B A)=A^{T}\left(B B^{T}\right) A=A^{T} I A=A^{T} A=I$

$$
\begin{equation*}
\text { i.e., }(B A)(B A)^{T}=(B A)^{T}(B A)=I \tag{1}
\end{equation*}
$$

$\therefore B A$ is an orthogonal matrix
Property 4: The determinant of an orthogonal matrix is ± 1.
Proof: Let A be an orthogonal matrix $\Rightarrow A A^{T}=A^{T} A=I$
Consider

$$
A A^{T}=I
$$

Applying det on both sides, we get $\operatorname{det}\left(A A^{T}\right)=\operatorname{det}(I)$

$$
\begin{array}{ll}
\Rightarrow \operatorname{det}(A) \operatorname{det}\left(A^{T}\right)=1 & {[\because \operatorname{det}(I)=1]} \\
\Rightarrow \operatorname{det}(A) \operatorname{det}(A)=1 & {\left[\because \operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)\right]} \\
\Rightarrow(\operatorname{det}(A))^{2}=1 & \\
\Rightarrow \operatorname{det}(A)= \pm 1 &
\end{array}
$$

Complex matrix: A matrix A is said to be complex if at least one element of A is a complex number.
Example: $A=\left[\begin{array}{cc}2-3 i & 7 \\ 4 & -2 i\end{array}\right]$
Conjugate of a matrix: The matrix obtained by replacing the elements of a complex matrix A by the corresponding conjugate complex numbers is called the conjugate of the matrix A and is denoted by \bar{A}.
Transposed conjugate of a matrix: The transposed conjugate of matrix A i.e., $(\bar{A})^{T}$ and the conjugate of the transpose of matrix A i.e., $\overline{\left(A^{T}\right)}$ are equal. Each of them is denoted by A^{θ}
Thus, $A^{\theta}=(\bar{A})^{T}=\overline{\left(A^{T}\right)}$
Example: $A=\left[\begin{array}{ccc}3+i & 1 & 1-i \\ 2 & 2 i & 2+3 i \\ 0 & -i & -7+6 i\end{array}\right] \Rightarrow \bar{A}=\left[\begin{array}{ccc}3-i & 1 & 1+i \\ 2 & -2 i & 2-3 i \\ 0 & i & -7-6 i\end{array}\right]$

$$
\therefore \quad A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{ccc}
3-i & 2 & 0 \\
1 & -2 i & i \\
1+i & 2-3 i & -7-6 i
\end{array}\right]
$$

$>$ A complex square matrix A is said to be Hermitian if $A^{\theta}=A$ i.e., $A^{T}=\bar{A}$
Example: $A=\left[\begin{array}{ccc}3 & 1 & -2+3 i \\ 1 & 0 & 6 i \\ -2-3 i & -6 i & -4\end{array}\right] \Rightarrow \bar{A}=\left[\begin{array}{ccc}3 & 1 & -2-3 i \\ 1 & 0 & -6 i \\ -2+3 i & 6 i & -4\end{array}\right]$
$\Rightarrow A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{ccc}3 & 1 & -2+3 i \\ 1 & 0 & 6 i \\ -2-3 i & -6 i & -4\end{array}\right]=A$
$\therefore A$ is a Hermitian matrix
Note: The principal diagonal elements of a Hermitian matrix are all real.
$>$ A complex square matrix A is said to be Skew-Hermitian if $A^{\theta}=-A$ i.e., $A^{T}=-\bar{A}$

Example: $A=\left[\begin{array}{ccc}i & 2+i & -3+2 i \\ -2+i & -2 i & 4+3 i \\ 3+2 i & -4+3 i & 0\end{array}\right] \Rightarrow \bar{A}=\left[\begin{array}{ccc}-i & 2-i & -3-2 i \\ -2-i & 2 i & 4-3 i \\ 3-2 i & -4-3 i & 0\end{array}\right]$

$$
\therefore A^{\theta}=(\bar{A})^{T}=\left[\begin{array}{ccc}
-i & -2-i & 3-2 i \\
2-i & 2 i & -4-3 i \\
-3-2 i & 4-3 i & 0
\end{array}\right]=-\left[\begin{array}{ccc}
i & 2+i & -3+2 i \\
-2+i & -2 i & 4+3 i \\
3+2 i & -4+3 i & 0
\end{array}\right]=-A
$$

i.e., $A^{\theta}=A \Rightarrow A$ is a skew-Hermitian matrix

Note: The principal diagonal elements of a Skew- Hermitian matrix are either zeros or purely imaginary \Rightarrow A complex square matrix A is said to be Unitary if $A A^{\theta}=A^{\theta} A=I$ or $A^{\theta}=A^{-1}$
Example: $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right] \Rightarrow A^{\theta}=(\bar{A})^{T}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$
Now $A A^{\theta}=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right] \times \frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]=\frac{1}{3}\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=I$
Similarly, we can prove that $A^{\theta} A=I$
$\therefore A$ is a unitary matrix.
Properties of Complex Matrices:
i) Every square matrix can be uniquely expressed as the sum of Hermitian and skew- Hermitian matrices.
ii) Every Hermitian matrix can be written as $A+i B$ where A is real and symmetric and B is real and skew- symmetric.
iii) Every Skew-Hermitian matrix can be written as $A+i B$ where A is real and skew-symmetric and B is real and symmetric.
iv) The inverse and transpose of a unitary matrix are unitary.
v) The product of two unitary matrices is a unitary matrix.

Elementary transformations on a matrix:

Any one of the following operations on a matrix is called an elementary transformation.
(i) $R_{i} \leftrightarrow R_{j}$: Interchange of $i^{\text {th }}$ row and $j^{\text {th }}$ row.
(ii) $R_{i} \rightarrow k R_{i}$: Multiplication of each element of $i^{\text {th }}$ row with a non-zero constant k.
(iii) $R_{j} \rightarrow R_{j}+k R_{i}$: Addition of k times the elements of $i^{\text {th }}$ row to the corresponding elements of $j^{\text {th }}$ row.

The corresponding column transformations are denoted by $C_{i} \leftrightarrow C_{j}, C_{i} \rightarrow k C_{i}, C_{j} \rightarrow C_{j}+k C_{i}$
Equivalence of matrices: If a $m \times n$ matrix B is obtained from a given $m \times n$ matrix A by finite number of elementary transformations on A, then A is said to be equivalent to B.
Symbolically, we can write $A \sim B$
Minor of a matrix: Let A be a matrix of order $m \times n$. The determinant of a square sub-matrix of order r of matrix A is called its minor of order r.
Rank of a matrix: A positive integer r is said to be rank of a non-zero matrix A of order $m \times n$ if it has at least one non zero minor of order r and every minor of order $(r+1)$ is zero.

The rank of the matrix A is denoted by $\rho(A)$.

Properties:

i) If A is equivalent to B i.e., $A \sim B$ then $\rho(A)=\rho(B)$
ii) Rank of a matrix A and its transpose are the same i.e., $\rho(A)=\rho\left(A^{T}\right)$
iii) Rank of a null matrix is zero
iv) If A is a non-zero matrix then $\rho(A) \geq 1$
v) If A is a non-singular matrix of order r then $\rho(A)=r$
vi) If A is a square matrix of order n and $\rho(A)<n$ then $|A|=0$ i.e., A is singular.
vii) If A is a matrix of order $m \times n$, then $\rho(A) \leq \min \{m, n\}$
viii) Rank of the identity matrix I_{n} is n

Zero row and Non-zero row: If all the elements in a row of a matrix are zeros, then it is called a zero row and if there is at least one non-zero element in a row then it is called a non-zero row.

Row reduced echelon form of a matrix:

A matrix is said to be in echelon form if it satisfies the following conditions
i) Zero rows, if any, must be below the non-zero row
ii) The number of zeros before the first non-zero element in a row is less than the number of such zeros in the next row.
Note: i) The number of non-zero rows in row reduced echelon form of a matrix is equal to its rank
ii) Use elementary row operations only to reduce the matrix to echelon form.
iii) Elementary transformations do not alter (effect) the order and rank of a matrix.

Normal form of a matrix: Every non-zero matrix A of rank r can be reduced by a sequence of elementary transformations, to one of the forms $I_{r},\left[\begin{array}{ll}I_{r} & O\end{array}\right],\left[\begin{array}{l}I_{r} \\ O\end{array}\right],\left[\begin{array}{ll}I_{r} & O \\ O & O\end{array}\right]$, called the normal form of A, where I_{r} is the identity matrix of order r.
Note: Use elementary row and column transformations to reduce the matrix into normal form.

System of linear equations:

Consider the system of m linear equations in n-unknowns $x_{1}, x_{2}, \ldots, x_{n}$

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n}=b_{2} \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\ldots+a_{m n} x_{n}=b_{m} \tag{1}
\end{align*}
$$

The matrix representation of above system is $A X=B$
where $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right], \quad X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right] \quad B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \ldots \\ b_{m}\end{array}\right]$
Here A is the coefficient matrix, X is the column variable matrix and B is the column constant matrix.
The system $A X=B$ is said to be
(i) Non-Homogeneous if $B \neq O$
(ii) Homogeneous if $B=O$

The Augmented matrix of the system (1) is denoted by $[A \mid B]$ and defined as

$$
[A \mid B]=\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

Conditions for consistency of non-homogeneous system of linear equations:

Consider the non-homogeneous system $A X=B$
i) If $\rho(A)=\rho(A \mid B)=r=n$ (number of unknowns) then the system $A X=B$ is consistent and has unique solution.
ii) If $\rho(A)=\rho(A \mid B)=r<n$ (number of unknowns) then the system $A X=B$ is consistent and has an infinite number of solutions in terms $(n-r)$ arbitrary constants.
iii) If $\rho(A) \neq \rho(A \mid B)$ then the system $A X=B$ is inconsistent $i . e$. it has no solution at all.

Procedure to find the solution of linear system non-homogeneous equations using rank method:
i) Write the given system in the form $A X=B$
ii) Write the augmented matrix $[A \mid B]$
iii) Reduce the augmented matrix $[A \mid B]$ into echelon form and then solve for the unknowns by back substitution.

Solution of system of homogeneous linear equations:

Consider the homogeneous system $A X=0$ in n unknowns $x_{1}, x_{2}, \ldots, x_{n}$, where A is coefficient matrix
i) If $\rho(A)=r=n$ (Number of unknowns) then the system $A X=0$ has a trivial solution (zero solution).
ii) If $\rho(A)=r<n$ (Number of unknowns) then the system $A X=0$ has an infinite number of non trivial solutions in terms $(n-r)$ arbitrary constants.
Note: (i) The homogeneous system $A X=0$ always has a solution
(ii) The homogeneous system $A X=0$ has a non-trivial solution if $|A|=0$

Gauss Elimination Method: This method solves a given system of n equations in n unknowns by transforming the coefficient matrix, into an upper triangular matrix and then solve for the unknowns by back substitution.
Consider a system of 3 equations in 3 unknowns

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

The above system can be written as $A X=B \ldots$ (1)
Consider augmented matrix $[A \mid B]=\left[\begin{array}{lll|l}a_{11} & a_{12} & a_{13} & b_{1} \\ a_{21} & a_{22} & a_{23} & b_{2} \\ a_{31} & a_{32} & a_{33} & b_{3}\end{array}\right]$
In this method the coefficient matrix A is brought to an upper triangular matrix by elementary row operations. The augmented matrix takes the following form

$$
[A \mid B]=\left[\begin{array}{ccc|c}
c_{11} & c_{12} & c_{13} & d_{1} \\
0 & c_{22} & c_{23} & d_{2} \\
0 & 0 & c_{33} & d_{3}
\end{array}\right]
$$

Then the solution is obtained by back substitution.
Gauss-Jordan Method: This method is modification of Gauss elimination method. In this method the coefficient matrix A the system of equations $A X=B$ is brought to an identity matrix by elementary row operations.
The augmented matrix takes the following form

$$
[A \mid B]=\left[\begin{array}{lll|l}
1 & 0 & 0 & l_{1} \\
0 & 1 & 0 & l_{2} \\
0 & 0 & 1 & l_{3}
\end{array}\right]
$$

Then the solution is obtained without the necessity of back substitution.
$\boldsymbol{L} \boldsymbol{U}$-Decomposition Method: Consider a non-homogeneous system of 3 equations in 3 unknowns $A X=B \ldots$ (1)
A non-singular matrix A is said to have a triangular factorization or $L U$-Decomposition if A can be expressed as the product of a lower triangular matrix L with ones on its main diagonal and an upper triangular matrix U i.e., $A=L U \ldots$ (2)
For $n=3$, we have $A_{3 \times 3}=L_{3 \times 3} U_{3 \times 3}$

$$
\text { i.e., }\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]
$$

The condition for non-singularity of A implies that $u_{i i} \neq 0$ for all i.
Substituting (2) in (1), we get $L U X=B \ldots$ (3)
Put $Y=U X \ldots$ (4) then (3) becomes $L Y=B \ldots$ (5)
Solve first (5) for Y using forward substitution and then solve (4) for X using backward substitution.

Multiple Choice Questions:

1. If the rank of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & p & 7 \\ 3 & 6 & 10\end{array}\right]$ is 2 then $p=\ldots . .$.
A) 2
B) 3
C) 4
D) -3

Answer: A

2. A real matrix $A=\left[a_{i j}\right]_{n \times n}$ is defined as $a_{i j}=i . j \forall i, j$ then rank of A is......
A) $n-1$
B) n
C) 1
D) $n-2$

Answer: C
3. If A is a 3×4 matrix such that the system $A X=B$ is inconsistent then the highest possible rank of A will be
A) 1
B) 2
C) 3
D) 4

Answer: B

4. If $A=\left[a_{i j}\right]_{20 \times 20}$ be a matrix such that $a_{i j}=\min \{i, j\} ; i, j=1,2, \ldots .20$. Then the rank of $A=\ldots$. .
A) 19
B) 10
C) 20
D) 1

Answer: C
5. The system of equations $3 x-y+4 z=3, x+2 y-3 z=-2,6 x+5 y+\lambda z=-3$ have an infinite number of solutions for value of λ given by
A) -7
B) 7
C) 5
D) -5

Answer: D

6. If A and B are non-singular matrices of order n then which of the following statement is not true
A) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
B) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
C) $\operatorname{det}(A+B)=\operatorname{det}(A)+\operatorname{det}(B)$
D) $\operatorname{det}\left(A A^{-1}\right)=1$

Answer: C
7. If a matrix A is decomposed into its symmetric part $P=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 5 \\ 1 & 5 & 2\end{array}\right]$ and skew-symmetric part $Q=\left[\begin{array}{ccc}0 & 0 & 2 \\ 0 & 0 & -1 \\ -2 & 1 & 0\end{array}\right]$ then $A=\ldots \ldots$
A) $\left[\begin{array}{ccc}2 & 1 & 3 \\ 1 & 1 & 4 \\ -1 & 6 & 2\end{array}\right]$
В) $\left[\begin{array}{ccc}2 & 1 & 2 \\ 1 & 1 & 4 \\ -1 & 4 & 2\end{array}\right]$
C) $\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 1 & 2 \\ -1 & 6 & 0\end{array}\right]$
D) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 & 4 \\ 1 & 6 & 2\end{array}\right]$

Answer: A
8. If $X_{4 \times 3}, Y_{4 \times 3}, P_{2 \times 3}$ are three non-zero matrices then order of the matrix $\left[P\left(X^{T} Y\right)^{-1} P^{T}\right]^{T}$ is.....
A) 3×4
B) 4×3
C) 2×2
D) 3×3

Answer: C
9. Suppose $M=\frac{1}{5}\left[\begin{array}{ll}3 & 4 \\ x & 3\end{array}\right]$ is a matrix such that and $M^{T}=M^{-1}$ then $x=\ldots$.
A) 4
B) -4
C) 5
D) -5

Answer: B
10. In solving system of equations $A X=B$ by Gauss-Jordan method, the coefficient matrix A is reduced to \qquad matrix.
A) Identity
B) Diagonal
C)Upper triangular
D) Lower triangular

Answer: A
11. If the system $\left[\begin{array}{ccc}k & k & k \\ 0 & k-1 & k-1 \\ 0 & 0 & k^{2}-1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has only one linearly independent solution then $k=\ldots$.
A) 0,1
B) $0,-1$
C) $1,-1$
D) $0,1,-1$

Answer: B
12. The determinant of the matrix $P=\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 2 & 1\end{array}\right]$ is $\ldots .$.
A) 1
B) 2
C) 3
D) 4

Answer: D

Linear Transformation: Consider a set of n linear equations

Let $Y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \ldots \\ y_{n}\end{array}\right], A=\left[\begin{array}{cccc}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & a_{n 2} & \ldots & a_{n n}\end{array}\right]$ and $X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{n}\end{array}\right]$
Then set of n equations (1) can be represented as $Y=A X \ldots$ (2), which transforms the set of n variables $\left(x_{1}, x_{2}, . ., x_{n}\right)$ into the set of n variables $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.Thus (2) is a transformation which transforms X into Y.Here A is known as the matrix of the transformation.

The transformation $Y=A X$ is said to be
i) linear if $A\left(c_{1} X_{1}+c_{2} X_{2}\right)=c_{1}\left(A X_{1}\right)+c_{2}\left(A X_{2}\right)=c_{1} Y_{1}+c_{2} Y_{2}$, where c_{1}, c_{2} are constants.
ii) regular if A is non singular matrix i.e., $|A| \neq 0$
iii) orthogonal if A is orthogonal matrix i.e., $A^{-1}=A^{T}$

The inverse transformation of $Y=A X$ is given by $X=A^{-1} Y$.
Eigen values and Eigen vectors: Let A be an $n \times n$ matrix. Suppose the linear transformation $Y=A X$ transforms X into a scalar multiple of itself i.e., $A X=Y=\lambda X$ then the scalar λ is known as the eigen value or characteristic root and the corresponding non zero vector X is known as the eigen vector or characteristic vector of A.

Example. Let $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right], X_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], X_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Now $A X_{1}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}1 \\ -1\end{array}\right]=1\left[\begin{array}{c}1 \\ -1\end{array}\right]=\lambda_{1} X_{1}$
$\therefore \lambda_{1}=1$ is the eigen value of A corresponding to the eigen vector $X_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
Now $A X_{2}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{c}14 \\ 4\end{array}\right]=2\left[\begin{array}{l}7 \\ 4\end{array}\right] \neq \lambda_{2} X_{2}$
$\therefore X_{2}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is not an eigen vector of A
Characteristic equation: If λ is an eigen value of A corresponding to the eigen vector X, then

$$
\begin{aligned}
A X=\lambda X & \Rightarrow A X=\lambda I X \\
& \Rightarrow A X-\lambda I X=0 \\
& \Rightarrow(A-\lambda I) X=0
\end{aligned}
$$

Thus $|A-\lambda I|=0$ is known as the characteristic equation of A.

Note: i) The roots of characteristic equation of A are the eigen values of A.
ii) If all the n eigen values of A are distinct, then there correspond n distinct linearly independent eigen vectors
iii) The algebraic multiplicity of an eigen value λ is its order as a root of the characteristic equation (i.e., if λ is repeated m times then its algebraic multiplicity is m)
iv) The geometric multiplicity of λ is the number of linearly independent eigen vectors corresponding to λ.
Procedure to find eigen values and eigen vectors of \boldsymbol{A} :
i) Solve the characteristic equation $|A-\lambda I|=0$ for the eigen values $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.
ii) For a specific eigen value λ_{i}, solve the homogeneous system $\left(A-\lambda_{i} I\right) X=O$, then we get the eigen vector of A corresponding to λ_{i}
Note: The characteristic equation of $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ is $|A-\lambda I|=0$

$$
\text { i.e., }\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|=0
$$

$\Rightarrow \lambda^{3}-(\operatorname{tr}(A)) \lambda^{2}+($ Sum of the minors of principal diagonal elements of $A) \lambda-\operatorname{det}(A)=0$
$\Rightarrow \lambda^{3}-\left(a_{11}+a_{22}+a_{33}\right) \lambda^{2}+\left[\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{13} \\ a_{31} & a_{33}\end{array}\right|+\left|\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right|\right] \lambda-\operatorname{det}(A)=0$

Properties of Eigen values and Eigen vectors:

Property 1: Any square matrix A and its transpose A^{T} have the same eigen values.
Property 2: The eigen values of a triangular matrix are just the diagonal elements of the matrix.
Property 3: The eigen values of a diagonal matrix are its diagonal elements
Property 4: The sum of the eigen values of matrix A is trace of A
Property 5: The product of the eigen values of a matrix A is equal to its determinant.
Property 6: If λ is an eigen value of a matrix A then $\frac{1}{\lambda}$ is an eigen value of A^{-1}.
Property 7: If λ is an eigen value of an orthogonal matrix A then $\frac{1}{\lambda}$ is also its eigen value.
Property 8: If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigen values of the matrix A then A^{m} has the eigen values $\lambda_{1}^{m}, \lambda_{2}^{m}, \ldots, \lambda_{n}{ }^{m}$ (m being a positive integer)
Property 9: If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigen values of matrix A then $\lambda_{1} \pm k, \lambda_{2} \pm k, \ldots, \lambda_{n} \pm k$ are the eigen values of $A \pm k I$.
Property 10: If λ is an eigen value of a non singular matrix A, then $\frac{|A|}{\lambda}$ is an eigen value of the matrix $\operatorname{adj} A$.
Property 11: The eigen values of an orthogonal matrix are of unit modulus.
Property 12: The eigen values of a Hermitian matrix are real.
Property 13: The eigen values of a Skew-Hermitian matrix are either zero or purely imaginary.
Property 14: The eigen values of an unitary matrix have absolute value 1.

Cayley-Hamilton theorem: Every square matrix satisfies its own characteristic equation i.e., if the characteristic equation of a nth order square matrix A is $\lambda^{n}+k_{1} \lambda^{n-1}+\ldots . .+k_{n-2} \lambda^{2}+k_{n-1} \lambda+k_{n}=0$ then $A^{n}+k_{1} A^{n-1}+\ldots . .+k_{n-2} A^{2}+k_{n-1} A+k_{n} I=O$

Similar Matrices: Let A and B be square matrices of same order. The matrix A is said to be similar to the matrix B if there exists a non-singular matrix P such that $A=P^{-1} B P$ or $P A=B P$

Note: If two matrices are similar, then they have the same characteristic equation and hence the same eigen values.
Example: Show that the matrices $A=\left[\begin{array}{cc}5 & 5 \\ -2 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right]$ are similar to each other
Solution. The given matrices are similar if there exists a non-singular matrix P such that $P A=B P$
Let $P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a matrix such that $P A=B P$

$$
\begin{aligned}
& \text { i.e., }\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{cc}
5 & 5 \\
-2 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
5 a-2 b & 5 a \\
5 c-2 d & 5 c
\end{array}\right]=\left[\begin{array}{cc}
a+2 c & b+2 d \\
-3 a+4 c & -3 b+4 d
\end{array}\right]
\end{aligned}
$$

Equating the corresponding elements, we obtain
$5 a-2 b=a+2 c \Rightarrow 4 a-2 b-2 c=0 \ldots(i) \quad ; \quad 5 a=b+2 d \Rightarrow 5 a-b-2 d=0 \ldots$ (ii)
$5 c-2 d=-3 a+4 c \Rightarrow 3 a+c-2 d=0 \ldots . i i i) ; 5 c=-3 b+4 d \Rightarrow 3 b+5 c-4 d=0 \ldots(i v)$
Solving the above equations, we get $a=1, b=1, c=1, d=2$.
$\therefore P=\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]$, which is a non-singular matrix.
Hence the matrices A and B are similar to each other

Diagonalization of a matrix:

A square matrix A is diagonalizable if it is similar to a diagonal matrix i.e., there exists a non-singular matrix P such that $P^{-1} A P=D$, where D is a diagonal matrix. Here P is known as the modal matrix and
D is known as the spectral matrix of A. Since similar matrices have the same eigen values, the diagonal elements of D are the eigen values of A.
Theorem: A square matrix A of order n is diagonalizable if and only if it has n linearly independent eigen vectors.
Note:

1) A square matrix A of order n has always n linearly independent eigen vectors when its eigen values are distinct.
2) For every eigen value λ of a matrix A, the geometric multiplicity $(\lambda) \leq \operatorname{algebraic}$ multiplicity (λ).
3) A square matrix A is diagonalizable if and only if the geometric multiplicity is equal to the algebraic multiplicity for every eigen value of A.

Procedure to diagonalization and calculation of powers:

i) Find the eigen values and the corresponding eigen vectors of A.
ii) If the geometric multiplicity is equal to the algebraic multiplicity for every eigen value of A, then form the modal P by taking the eigen vectors as columns.
iii)Calculate P^{-1}.
iv) Find the spectral matrix $D=P^{-1} A P \ldots$ (1)
v) Premultiplying (1) by P and post-multiplying (i) by P^{-1}, we get $P D P^{-1}=A \ldots$ (2)

From (2), we obtain $A^{2}=A \cdot A=\left(P D P^{-1}\right)\left(P D P^{-1}\right)=P D^{2} P^{-1}$

$$
\text { Similarly, } A^{3}=P D^{3} P^{-1}, A^{4}=P D^{4} P^{-1}, \ldots
$$

In general, $A^{n}=P D^{n} P^{-1}$ for any positive integer n.
Note: For any matrix polynomial $Q(A)$, we have $Q(A)=P Q(D) P^{-1}$
Quadratic Form: A homogeneous expression of second degree in $n(\geq 2)$ variables is called a quadratic form. i.e., An expression of the form $Q=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \ldots$ (1), where $a_{i j}=a_{j i}$ are real, is called a quadratic form in n variables $x_{1}, x_{2}, \ldots, x_{n}$.
$>$ Every quadratic form corresponding to a symmetric matrix A can be expressed in matrix form as $Q=X^{T} A X$, where A is known as the matrix of the quadratic form and $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$.

Examples: i) $2 x^{2}+4 x y-9 y^{2}$ is a quadratic form in two variables x, y
ii) $x_{1}^{2}+2 x_{2}^{2}-13 x_{3}^{2}-2 x_{1} x_{2}+6 x_{1} x_{3}+8 x_{2} x_{3}$ is a quadratic form in three variables x_{1}, x_{2}, x_{3}.
$>$ The real symmetric matrix A of the $\mathrm{QF} X^{T} A X=a_{11} x_{1}^{2}+a_{22} x_{2}^{2}+a_{33} x_{3}^{2}+a_{12} x_{1} x_{2}+a_{23} x_{2} x_{3}+a_{13} x_{1} x_{3}$ is given by $A=\left[\begin{array}{ccc}\text { coeff }\left(x_{1}^{2}\right) & \frac{1}{2} \operatorname{coeff}\left(x_{1} x_{2}\right) & \frac{1}{2} \operatorname{coeff}\left(x_{1} x_{3}\right) \\ \frac{1}{2} \operatorname{coeff}\left(x_{1} x_{2}\right) & \operatorname{coeff}\left(x_{2}^{2}\right) & \frac{1}{2} \operatorname{coeff}\left(x_{2} x_{3}\right) \\ \frac{1}{2} \operatorname{coeff}\left(x_{1} x_{3}\right) & \frac{1}{2} \operatorname{coeff}\left(x_{2} x_{3}\right) & \operatorname{coeff}\left(x_{3}^{2}\right)\end{array}\right]=\left[\begin{array}{ccc}a_{11} & \frac{1}{2}\left(a_{12}\right) & \frac{1}{2}\left(a_{13}\right) \\ \frac{1}{2}\left(a_{12}\right) & a_{22} & \frac{1}{2}\left(a_{23}\right) \\ \frac{1}{2}\left(a_{13}\right) & \frac{1}{2}\left(a_{23}\right) & a_{33}\end{array}\right]$
Example: Write down the symmetric matrix of the following quadratic forms:
a) $x^{2}-4 x y+5 y^{2}$
b) $x_{1}^{2}+3 x_{2}{ }^{2}-2 x_{3}^{2}+2 x_{1} x_{2}-6 x_{1} x_{3}-4 x_{2} x_{3}$

Solution: a) Let $X^{T} A X=x^{2}-4 x y+5 y^{2}$
The matrix of the quadratic form is $A=\left[\begin{array}{rr}1 & -2 \\ -2 & 5\end{array}\right]$
b) Let $X^{T} A X=x_{1}^{2}+3 x_{2}{ }^{2}-2 x_{3}^{2}+2 x_{1} x_{2}-6 x_{1} x_{3}+4 x_{2} x_{3}$

The matrix of the quadratic form is $A=\left[\begin{array}{rrr}1 & 1 & -3 \\ 1 & 3 & 2 \\ -3 & 2 & -2\end{array}\right]$
Example: Write down the quadratic form corresponding to the following symmetric matrices:
a) $A=\left[\begin{array}{rr}1 & 2 \\ 2 & -3\end{array}\right]$
b) $A=\left[\begin{array}{ccc}1 & 3 & -5 \\ 3 & 2 & 0 \\ -5 & 0 & -4\end{array}\right]$

Solution: a) Let $Q=X^{T} A X$ be the required quadratic form, where $X=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$

$$
\therefore Q=X^{T} A X=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]==x_{1}^{2}-3 x_{2}^{2}+4 x_{1} x_{2}
$$

b) Let $Q=X^{T} A X$ be the required quadratic form, where $X=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$

$$
\therefore Q=X^{T} A X=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & -5 \\
3 & 2 & 0 \\
-5 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{1}^{2}+2 x_{2}{ }^{2}-4 x_{3}{ }^{2}+6 x_{1} x_{2}-10 x_{1} x_{3}
$$

Canonical Form: The canonical form or sum of the squares form of a quadratic form $Q=X^{T} A X$ in n variables $x_{1}, x_{2}, \ldots, x_{n}$ is another quadratic form $Q^{\prime}=Y^{T} D Y=\lambda_{1} y_{1}{ }^{2}+\lambda_{2} y_{2}{ }^{2}+\ldots+\lambda_{n} y_{n}{ }^{2}$, which is obtained by an orthogonal transformation $X=\widehat{P} Y$. Here \widehat{P} is known as normalized modal matrix and D is known as spectral matrix whose elements are the eigen values of matrix A.
Rank, Index, Signature and Nature of a Quadratic Form:
If the quadratic form (QF) $Q=X^{T} A X$ is reduced to the canonical form (CF) $Q^{\prime}=Y^{T} D Y$, then

1. Rank of a QF is the number terms in CF or the number of non-zero eigen values of the matrix A
2. Index of a QF is the number positive terms in CF or the number of positive eigen values of the matrix A.
3. Signature of a QF is the excess number of positive terms over the number of negative terms in CF or the excess number of positive eigen values over the number of negative eigen values of the matrix A.
4. Nature of a QF: A quadratic form $Q=X^{T} A X$ is said to be
i) Positive definite if all the eigen values of A are positive.
ii) Positive semi-definite if all the eigen values of A are non-negative (≥ 0) and at least one eigen value is 0
iii)Negative definite if all the eigen values of A are negative.
iv) Negative semi-definite if all the eigen values of A are non-positive (≤ 0) and at least one eigen value is 0
v) Indefinite if some eigen values of A are positive and some are negative.
$>$ The norm or length of a vector $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$ is denoted by $\|X\|$ and is defined as $\|X\|=\sqrt{X^{T} X}=\sqrt{x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}}$
$>$ Three vectors X_{1}, X_{2} and X_{3} are said to be pair wise orthogonal if $X_{1}^{T} X_{2}=0, X_{2}{ }^{T} X_{3}=0$ an $X_{3}{ }^{T} X_{1}=0$.
$>$ The linearly independent eigen vectors corresponding to the distinct eigen values of a symmetric matrix A are always pair wise orthogonal.
Procedure to reduce Quadratic Form into Canonical Form by orthogonal transformation:
Let $Q=X^{T} A X$ be the QF in n variables $x_{1}, x_{2}, \ldots, x_{n}$.
Step1: Identify the symmetric matrix A associated with the $Q=X^{T} A X$, where $Y=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$
Step 2: Find the eigen values of A, say, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$
Step 3: Find the corresponding eigen vectors $X_{1}, X_{2}, \ldots, X_{n}$ such that they are pair wise orthogonal
Step 4: Find the normalized modal matrix $\hat{P}=\left[\frac{X_{1}}{\left\|X_{1}\right\|}, \frac{X_{2}}{\left\|X_{2}\right\|}, \ldots, \frac{X_{n}}{\left\|X_{n}\right\|}\right]$, which is always orthogonal.
Step 5: Let $X=\hat{P} Y \ldots(i)$ be the orthogonal transformation which transforms the given QF into CF , where \hat{P} is known as the matrix of the transformation.
Step 6: By diagonalization, $D=\hat{P}^{-1} A \hat{P}=\hat{P}^{T} A \hat{P} \ldots$ (ii) $\left(\because \hat{P}\right.$ is orthogonal, $\left.\hat{P}^{-1}=\hat{P}^{T}\right)$.

$$
\begin{aligned}
\therefore X^{T} A X=(\hat{P} Y)^{T} A(\hat{P} Y) & =\left(Y^{T} \hat{P}^{T}\right) A(\hat{P} Y)[\because \text { By }(i)] \\
& =\left(Y^{T} \hat{P}^{T}\right) A(\hat{P} Y) \\
& =Y^{T}\left(\hat{P}^{T} A \hat{P}\right) Y \\
& =Y^{T} D Y \quad[\because \text { By }(i i)]
\end{aligned}
$$

Step 7: The required CF is $Y^{T} D Y=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\ldots+\lambda_{n} y_{n}^{2}$, where $Y=\left[y_{1}, y_{2}, \ldots, y_{n}\right]^{T}$

Multiple Choice Questions:

1. A real matrix $A=\left[a_{i j}\right]_{n \times n}$ is defined as $a_{i j}=\left\{\begin{array}{l}i, \text { for } i=j \\ 0, \text { for } i \neq j\end{array}\right.$, then trace $(A)=\ldots \ldots$
A) $n(n+1)$
B) $n(n-1)$
C) $\frac{n(n-1)}{2}$
D) $\frac{n(n+1)}{2}$

Answer: D
2. If the matrix $A=\left[\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right]$ is similar to matrix B, then sum of the eigen values of $B=\ldots \ldots$
A) 5
B) 6
C) 7
D) 9

Answer: C
3. Which of the following set represents the spectrum of a unitary matrix?
A) $\{ \pm 1,1 \pm i\}$
B) $\left\{ \pm 1, \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}\right\}$
C) $\{ \pm 1,-1 \pm i\}$
D) $\{1 \pm i,-1 \pm i\}$

Answer: B
4. Let a and b be two real numbers such that $a^{2}+b^{2}=1$. The eigen values of the non-singular matrix $A=\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ are $\ldots \ldots$.
A) $1,-1$
B) $2,-2$
C) $a,-a$
D) $b,-b$

Answer: A
5. If $\left[\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right]$ is the eigen vector of matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ k & 2 & 3\end{array}\right]$ corresponding to the eigen value 3 then $k=\ldots .$.
A) -1
B) -2
C) 1
D) 2

Answer: D
6. If $1,-1,2$ are eigen values of a matrix $A_{3 \times 3}$ then $\operatorname{trace}\left(A^{2}-3 A+5 I\right)=\ldots$.
A) 10
B) 12
C) 15
D) 18

Answer: C
7. If $A_{2 \times 2}$ is a non-singular matrix such that $\operatorname{trace}(A)=5$ and $\operatorname{trace}\left(A^{2}\right)=9$ then $\operatorname{det}(A)=$. \qquad
a) 7
b) 8
c) 5
d) 6

Answer: B
8. The matrix $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$ has three distinct eigen values and one of its eigen vectors is $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$.

Which one of the following can be another eigen vector of A ?
B) $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
В) $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
C) $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
D) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Answer: B
9. If $M=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ then $M^{8}-2 M^{7}+2 M^{6}-4 M^{5}+3 M^{4}-6 M^{3}+2 M^{2}=\ldots$.
A) M
B) $2 M$
C) $3 M$
D) $4 M$

Answer: D
10. If $P=\left[\begin{array}{rr}x & -3 \\ 3 & 4\end{array}\right]$ is a non-singular matrix with repeated eigen value and $x \in \mathbb{R}^{+}$then $x=\ldots$...
A) 2
B) 10
C) 4
D) 12

Answer: B
11. If $1,-2,3$ are eigen values of a matrix $A_{3 \times 3}$ then $A^{-1}=\ldots .$.
A) $\frac{1}{6}\left(5 I-2 A-A^{2}\right)$
B) $\frac{1}{6}\left(5 I+2 A+A^{2}\right)$
C) $\frac{1}{6}\left(5 I+2 A-A^{2}\right)$
D) $\frac{1}{6}\left(5 I-3 A-A^{2}\right)$

Answer: C
12. If p, q are index and signature of the QF $2 x^{2}-3 y^{2}-7 z^{2}$ respectively then $p+q=\ldots$. .
A) 0
B) 2
C) 3
D) 4

Answer: A

UNIT-III: Sequences \& Series

Sequence: A function $u: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ is called a sequence of real numbers and is denoted by $\left\{u_{n}\right\}$ or $\left\langle u_{n}\right\rangle$.
Thus $\left\{u_{n}\right\}=u_{1}, u_{2}, u_{3}, \ldots, u_{n}, \ldots$
Here u_{n} is called the $n^{\text {th }}$ term of the sequence $\left\{u_{n}\right\}$ and $u_{1}, u_{2}, u_{3}, \ldots$ are called respectively first term, second term, third term etc.,
$>$ The sequence $\left\{u_{n}\right\}$ denoted by $u_{n}=k(\in \mathbb{R})$ is called a constant sequence.
$>$ A sequence $\left\{u_{n}\right\}$ is said to be bounded below if there exists $k_{1} \in \mathbb{R}$ such that $k_{1} \leq u_{n} \forall n \in \mathbb{Z}^{+}$, where k_{1} is called the lower bound of the sequence $\left\{u_{n}\right\}$.
$>$ If k_{1} is a lower bound of the sequence $\left\{u_{n}\right\}$ then any number less than k_{1} is a lower bound of $\left\{u_{n}\right\}$.
$>$ If $\left\{u_{n}\right\}$ is bounded below, the greatest among the lower bounds of $\left\{u_{n}\right\}$ is called the greatest lower bound (g.l.b) of $\left\{u_{n}\right\}$.
$>$ A sequence $\left\{u_{n}\right\}$ is said to be bounded above if there exists $k_{2} \in \mathbb{R}$ such that $u_{n} \leq k_{2} \forall n \in \mathbb{Z}^{+}$, where k_{2} is called the upper bound of the sequence $\left\{u_{n}\right\}$.
$>$ If k_{2} is an upper bound of the sequence $\left\{u_{n}\right\}$ then any number greater than k_{2} is an upper bound of $\left\{u_{n}\right\}$.
$>$ If $\left\{u_{n}\right\}$ is bounded above, the lowest among the upper bounds of $\left\{u_{n}\right\}$ is called the least upper bound (l.u.b) of $\left\{u_{n}\right\}$.
$>$ A sequence $\left\{u_{n}\right\}$ is said to be bounded if there exists numbers $k_{1} \& k_{2}$ such that $k_{1} \leq u_{n} \leq k_{2} \forall n \in \mathbb{Z}^{+}$, otherwise $\left\{u_{n}\right\}$ is said to be unbounded.
\Rightarrow A sequence $\left\{u_{n}\right\}$ is said to be monotonically increasing if $u_{n+1} \geq u_{n}, \forall n$
i.e., $u_{1} \leq u_{2} \leq u_{3} \leq \ldots . \leq u_{n} \leq u_{n+1} \leq \ldots .$.
$>$ A sequence $\left\{u_{n}\right\}$ is said to be monotonically decreasing if $u_{n+1} \leq u_{n}, \forall n$ i.e., $u_{1} \geq u_{2} \geq u_{3} \geq \ldots . \geq u_{n} \geq u_{n+1} \geq \ldots$.
$>$ A sequence $\left\{u_{n}\right\}$ is said to be monotonic if it is either monotonically increasing or monotonically decreasing.
Limit of a sequence: A real number l is said to be limit of $\left\{u_{n}\right\}$ if to each $\varepsilon>0$, there exists $m \in \mathbb{Z}^{+}$ such that $\left|u_{n}-l\right|<\varepsilon, \forall n \geq m$.
If l is the limit of $\left\{u_{n}\right\}$, then we write $\lim _{n \rightarrow \infty} u_{n}=l$

Note:

(i) A sequence may have a unique limit or may have more than one limit or may not have a limit.
(iii)

Limit of a sequence if it exists is unique
(iv) If the two sub-sequences $\left\{u_{2 n}\right\}$ and $\left\{u_{2 n-1}\right\}$ of sequence $\left\{u_{n}\right\}$ converges to the same limit l then $\left\{u_{n}\right\}$ also converges to l
(v) Every convergent sequence is bounded. But a bounded sequence need not be convergent. For Example: The sequence $\left\{(-1)^{n}\right\}=-1,1,-1,1,-1, \ldots$. is bounded but not convergent.

Convergence, divergence and oscillation of a sequence:

$>$ A sequence $\left\{u_{n}\right\}$ is said to be convergent if it has a finite limit $i . e ., \lim _{n \rightarrow \infty} u_{n}=l$ (finite value)
For example: The sequence $\left\{\frac{1}{2^{n}}\right\}$ is convergent $\left(\because \lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0\right)$
$>$ A sequence $\left\{u_{n}\right\}$ is said to be divergent if it has an infinite limit i.e., $\lim _{n \rightarrow \infty} u_{n}=+\infty$ or $-\infty$ For example: The sequence $\left\{n^{2}\right\}$ is divergent $\left(\because \lim _{n \rightarrow \infty} n^{2}=+\infty\right)$
$>$ If sequence $\left\{u_{n}\right\}$ neither converges to finite value nor diverges to $\pm \infty$ is said to be an oscillatory
$>$ A bounded sequence which does not converge is said to oscillate finitely
For example: The sequence $\left\{(-1)^{n}\right\}$ oscillates finitely since it is a bounded sequence and $\lim _{n \rightarrow \infty}(-1)^{n}=\left\{\begin{array}{r}1, n \text { is even } \\ -1, n \text { is odd }\end{array}\right.$
$>$ An unbounded sequence which does not diverge is said to oscillate infinitely
For example: The sequence $\left\{(-1)^{n} n\right\}$ oscillates infinitely since it is an unbounded sequence and $\lim _{n \rightarrow \infty}(-1)^{n} n=\left\{\begin{array}{l}+\infty, n \text { is even } \\ -\infty, n \text { is odd }\end{array}\right.$
Infinite Series: If $\left\{u_{n}\right\}$ is a sequence of real numbers, then the expression $u_{1}+u_{2}+u_{3}+\ldots .+u_{n}+\ldots$. is called an infinite series i.e., A series is a sum of the terms of the sequence.
The infinite series $u_{1}+u_{2}+u_{3}+\ldots .+u_{n}+\ldots$. is usually denoted by $\sum_{n=1}^{\infty} u_{n}$ or more briefly, by $\sum u_{n}$ Partial sums: If $\sum u_{n}$ is an infinite series, then $S_{n}=u_{1}+u_{2}+u_{3}+\ldots . .+u_{n}$ is called the $n^{\text {th }}$ partial sum
of $\sum u_{n}$. Thus, the $n^{\text {th }}$ partial sum of an infinite series is the sum of the first n terms.
$>$ To every infinite series $\sum u_{n}$, there corresponds a sequence $\left\{S_{n}\right\}$ of its partial sums, where $S_{1}, S_{2}, S_{3}, \ldots$. are the first, second, third, ...partial sums of the series
Behaviour of an infinite series: An infinite series $\sum u_{n}$ converges, diverges or oscillates (finitely or infinitely) according as the sequence $\left\{S_{n}\right\}$ of its partial sums converges, diverges or oscillates (finitely or infinitely)
$>\sum u_{n}$ is convergent if $\lim _{n \rightarrow \infty} S_{n}=$ finite
$>\sum u_{n}$ is divergent if $\lim _{n \rightarrow \infty} S_{n}=+\infty$ or $-\infty$
$>\sum u_{n}$ oscillates finitely if $\left\{S_{n}\right\}$ is bounded and not convergent
$>\sum u_{n}$ oscillates infinitely if $\left\{S_{n}\right\}$ is unbounded and not divergent
Necessary condition for convergence: If a series $\sum u_{n}$ is convergent, then $\lim _{n \rightarrow \infty} u_{n}=0$
Preliminary test for divergence: If $\lim _{n \rightarrow \infty} u_{n} \neq 0$ then the series $\sum u_{n}$ is divergent
$>$ A positive term series either converges or diverges to $+\infty$
$>$ The geometric series $\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+r^{3}+\ldots .$.
(i) converges if $-1<r<1$
(ii) diverges if $r \geq 1$
(iii) oscillates finitely if $r=-1$
(iv) oscillates infinitely if $r<-1$

The p-harmonic series $\sum \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\ldots$ converges if $p>1$ and diverges if $p \leq 1$
Some useful standard limits:
(i) $\lim _{n \rightarrow \infty} \frac{1}{n^{k}}=0$ for $k>0$
(ii) $\lim _{n \rightarrow \infty} n^{\frac{1}{n}}=1$
(iii) $\lim _{n \rightarrow \infty} x^{n}=0$ for $-1<x<1$
(iv) $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$
(v) $\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=e^{k}$ for any k

Series of positive terms: If all the terms of the series $\sum u_{n}$ are positive i.e., $u_{n}>0 \forall n$, then $\sum u_{n}$ is called the series of positive terms.
Comparison test for series of positive terms: Comparison test for series of positive terms consists of "comparison" between a given (unknown) series $\sum u_{n}$ and a known auxiliary series $\sum v_{n}$ whose nature is known.
Comparison test for convergence: Let $\sum u_{n}$ and $\sum v_{n}$ be two series of positive terms such that $u_{n} \leq v_{n} \forall n$ and $\sum v_{n}$ converges then $\sum u_{n}$ also converges
Comparison test for divergence: Let $\sum u_{n}$ and $\sum v_{n}$ be two series of positive terms such that $u_{n} \geq v_{n} \forall n$ and $\sum v_{n}$ diverges then $\sum u_{n}$ also diverges
Limit form of the comparison test: Let $\sum u_{n}$ and $\sum v_{n}$ be two series of positive terms such that $\lim _{n \rightarrow \infty} \frac{u_{n}}{v_{n}}=l($ finite $) \neq 0$ then $\sum u_{n}$ and $\sum v_{n}$ both converge or diverge together

Note: Most often the geometric series $\sum_{n=0}^{\infty} r^{n}$ and the $p-$ harmonic series $\sum \frac{1}{n^{p}}$ are chosen as a known
auxiliary series $\sum v_{n}$ for comparison in case of above three comparison tests.
D'Alembert's Ratio Test: Let $\sum u_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n+1}}=l$ (finite) then
$\sum u_{n}$ is said to be (i) convergent if $l>1$
(ii) divergent if $l<1$
and (iii) test fails when $l=1$
Note: Apply Raabe's test when Ratio test fails
Raabe's Test: Let $\sum u_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty} n\left(\frac{u_{n}}{u_{n+1}}-1\right)=l$ (finite) then $\sum u_{n}$ is said to be (i) convergent if $l>1$
(ii) divergent if $l<1$
and (iii) test fails when $l=1$
Cauchy's nth Root Test: Let $\sum u_{n}$ be a series of positive terms such that $\lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n}=l$ (finite) then $\sum u_{n}$ is said to be (i) convergent if $l<1$
(ii) divergent if $l>1$
and (iii) test fails when $l=1$
Note: Apply Cauchy's $n^{\text {th }}$ root test when u_{n} involves $n^{\text {th }}$ powers of itself as whole
Cauchy's Integral Test: Let $\sum u_{n}=\sum f(n)$ be a series of positive terms such that $f(n)$ decreases as n increases and $\int_{1}^{\infty} f(x) d x=l$ then $\sum u_{n}$ is said to be (i) convergent if l is finite
(ii) divergent if l is infinite

Alternating series: A series in which the terms are alternate positive and negative is called an alternating series. Thus, the series $\sum(-1)^{n-1} v_{n}=v_{1}-v_{2}+v_{3}-v_{4}+\ldots \ldots .+(-1)^{n-1} v_{n}+\ldots \ldots$, where $v_{n}>0 \forall n$, is an alternating series.
Leibnitz's Test: An alternating series of the form $\sum(-1)^{n-1} v_{n}$ is said to be convergent if $\left\{v_{n}\right\}$ is decreasing i.e., $v_{n} \geq v_{n+1} \forall n$ and $\lim _{n \rightarrow \infty} v_{n}=0$
$>$ An alternating series $\sum u_{n}$ is said to be absolutely convergent if $\sum\left|u_{n}\right|$ is convergent
$>$ An alternating series $\sum u_{n}$ is said to be conditionally convergent if $\sum u_{n}$ is convergent while $\sum\left|u_{n}\right|$ is divergent
$>$ Every absolutely convergent series is convergent. But a convergent series need not be absolutely convergent.

Multiple Choice Questions:

1. Which of the following sequence is not bounded?
A) $\left\{\frac{1}{n}\right\}$
B) $\left\{1+(-1)^{n}\right\}$
C) $\left\{(-1)^{n}\right\}$
D) $\left\{n+\frac{1}{n}\right\}$

Answer: D

2. Which of the following statement is FALSE?
A) Every convergent sequence is bounded
B) Every bounded sequence is convergent
C) The sequence $\left\{(-1)^{n}\right\}$ oscillates finitely
D) The sequence $\left\{\left(1+\frac{1}{n}\right)^{n}\right\}$ is convergent

Answer: B
3. Which of the following series is convergent?
A) $\sum \frac{1}{n}$
B) $\sum\left(\frac{3}{2}\right)^{n}$
C) $\sum \frac{1}{\sqrt{n}}$
D) $\sum\left(\frac{2}{3}\right)^{n}$

Answer: D
4. The $n^{t h}$ term of the series $\left(\frac{1}{4}\right)^{1}+\left(\frac{2}{7}\right)^{2}+\left(\frac{3}{10}\right)^{3}+\ldots \ldots$.
A) $\left(\frac{n}{5 n-1}\right)^{n}$
B) $\left(\frac{n}{3 n+1}\right)^{n}$
C) $\left(\frac{n}{n+2}\right)^{n}$
D) $\left(\frac{n+1}{5 n-1}\right)^{n}$

Answer: B
5. If $\sum v_{n}$ be the auxiliary series chosen to test the convergence of the series $\sum \frac{1}{n} \sin \left(\frac{1}{n}\right)$ then $v_{n}=\ldots$.
A) $\frac{1}{\sqrt{n}}$
B) $\frac{1}{n}$
C) $\frac{1}{n^{2}}$
D) $\frac{1}{n \sqrt{n}}$

Answer: C
6. Which of the following test is best suited to test the convergence of the series $\sum\left(1+\frac{1}{n}\right)^{-n^{2}}$
A) Ratio test
B) Raabe's test
C) Comparison test
D) Cauchy's $n^{\text {th }}$ root test

Answer: D
7. The series $\sum \frac{1}{n^{\lambda-1}}$ converges if $\ldots \ldots$
A) $\lambda>1$
B) $\lambda>2$
C) $\lambda \leq 1$
D) $\lambda \leq 2$

Answer: B
8. The geometric series $\sum(-2)^{n} \ldots \ldots$
A) converges
B) diverges
C) oscillates finitely
D) oscillates infinitely

Answer: D
9. Which of the following test is best suited to test the convergence of the series $\sum \frac{(n!)^{2}}{(2 n)!}$
A) Ratio test
B) Leibnitz test
C) Integral test
D) Cauchy's $n^{\text {th }}$ root test

Answer: A
10. The series $\sum \frac{4 \cdot 7 \cdot 10 \cdots \cdot(3 n+1)}{1 \cdot 2 \cdot 3 \cdot \cdots \cdot n}$ is convergent if
A) $x<3$
B) $x<\frac{1}{3}$
C) $x<\frac{1}{2}$
D) $x>\frac{1}{2}$

Answer: B
11. Which of the following series is absolutely convergent?
A) $\sum \frac{(-1)^{n-1}}{n}$
B) $\sum \frac{(-1)^{n-1}}{\sqrt{n}}$
C) $\sum \frac{(-1)^{n-1}}{n^{2}}$
D) $\sum \frac{(-1)^{n-1}}{4 n-1}$

Answer: C
12. Which of the following series is conditionally convergent?
A) $\sum \frac{(-1)^{n-1}}{n}$
B) $\sum \frac{(-1)^{n-1}}{2^{n-1}}$
C) $\sum \frac{(-1)^{n-1}}{n^{2}}$
D) $\sum \frac{(-1)^{n-1}}{n^{3}-1}$

Answer: B

UNIT-IV: Beta \& Gamma Functions and Mean Value Theorems

Beta \& Gamma Functions: Many integrals which cannot be expressed in terms of elementary functions can be evaluated in terms of Beta and Gamma functions.

Gamma Function: If $n>0$, then the definite integral $\int_{0}^{\infty} e^{-x} x^{n-1} d x$ is called the gamma function and it is denoted by $\Gamma(n)$ and read as gamma n.

$$
\text { Thus } \Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x
$$

Properties:

i) $\Gamma(1)=1$
ii) $\quad \Gamma(n)=(n-1) \Gamma(n-1) \quad$ [Reduction Formula of $\Gamma(n)]$
iii) $\Gamma(n)=(n-1)$!, if n is a positive integer
iv) $\Gamma(n)=(n-1)(n-2)(n-3) \ldots(n-k) \Gamma(n-k)$, where n is a positive fraction and $0<(n-k)<1$
v) $\Gamma(n)=\frac{\Gamma(n+k+1)}{n(n+1)(n+2) \ldots(n+k)}$, where n is a negative fraction and $0<(n+k+1)<1$
vi) $\Gamma(n)$ is not defined for $n=0,-1,-2,-3, \ldots \ldots$.
vii) $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$

Beta Function: If $m, n>0$ then the definite integral $\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$ is called the beta function and is denoted by $\beta(m, n)$ i.e., $\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x$

Properties:

i) Symmetry of Beta function: $\beta(m, n)=\beta(n, m)$
ii) Beta function in terms of trigonometric ratios: $\beta(m, n)=2 \int_{0}^{\pi / 2} \sin ^{2 m-1} \theta \cos ^{2 n-1} \theta d \theta$

Note: $\int_{0}^{\pi / 2} \sin ^{p} \theta \cos ^{q} \theta d \theta=\frac{1}{2} \beta\left(\frac{p+1}{2}, \frac{q+1}{2}\right)$

Others forms of Beta Function:

Form -I: $\beta(m, n)=\int_{0}^{\infty} \frac{x^{m-1}}{(1+x)^{m+n}} d x=\int_{0}^{\infty} \frac{x^{n-1}}{(1+x)^{m+n}} d x$
Form -II: $\beta(m, n)=\int_{0}^{1} \frac{x^{m-1}+x^{n-1}}{(1+x)^{m+n}} d x$
Form -III: $\beta(m, n)=\frac{1}{(b-a)^{m+n-1}} \int_{a}^{b}(x-a)^{m-1}(b-x)^{n-1} d x$
Relationship between Beta and Gamma Functions: $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$
Result: $\Gamma(n) \Gamma(n-1)=\frac{\pi}{\sin n \pi}(0<n<1)$
Example: (i) $\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)=\pi \sqrt{2} \quad$ (ii) $\Gamma\left(\frac{1}{3}\right) \Gamma\left(\frac{2}{3}\right)=\frac{2 \pi}{\sqrt{3}} \quad$ (iii) $\Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{5}{6}\right)=2 \pi$

Mean Value Theorems:

$>$ A function $f(x)$ is said to be continuous at a point $x=c$ if $\lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)=f(c)$
$>$ A function $f(x)$ is said to be continuous in the interval $[a, b]$ if it is continuous at every point of $[a, b]$
$>$ A function $f(x)$ is said to be differentiable at a point $x=c$ if

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}
$$

$>$ A function $f(x)$ is said to be differentiable in the interval $[a, b]$ if
(i) $f(x)$ is differentiable at every point of (a, b)
(ii) $\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$ and $\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b}$ exist
$>$ If $f(x)$ is continuous in the interval $[a, b]$, then the graph of $y=f(x)$ is a continuous curve for the points in $[a, b]$
$>$ If $f(x)$ is differentiable in the interval $[a, b]$, then there exist a unique tangent to the curve $y=f(x)$ at every point in $[a, b]$
Rolle's Theorem: Let a function $f:[a, b] \rightarrow \mathbb{R}$ be such that
(i) $f(x)$ is continuous in the interval $[a, b]$
(ii) $f(x)$ is differentiable in the interval (a, b) and
(iii) $f(a)=f(b)$ then there exist at least one value $c \in(a, b)$ such that $f^{\prime}(c)=0$

Geometrical Interpretation: Under these assumptions of Rolle's theorem, there is at least one point on the curve $y=f(x)$ where the tangent is parallel to the x-axis
Lagrange's Mean Value Theorem: Let a function $f:[a, b] \rightarrow \mathbb{R}$ be such that
(i) $f(x)$ is continuous in the interval $[a, b]$ and
(ii) $f(x)$ is differentiable in the interval (a, b) then there exist at least one value $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Geometrical Interpretation: Under these assumptions of Lagrange's mean value theorem, there is at least one point on the curve $y=f(x)$ where the tangent is parallel to the chord joining the end points $A(a, f(a))$ and $B(b, f(b))$.
Cauchy's Mean Value Theorem: Let $f:[a, b] \rightarrow \mathbb{R}, g:[a, b] \rightarrow \mathbb{R}$ be two functions such that
(i) $f(x)$ and $g(x)$ are continuous in the interval $[a, b]$
(ii) $f(x)$ and $g(x)$ are differentiable in the interval (a, b) and
(iii) $g^{\prime}(x) \neq 0 \quad \forall x \in(a, b)$ then there exist at least one value $c \in(a, b)$ such that

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Taylor's Theorem (Generalised Mean Value Theorem): Let a function $f:[a, b] \rightarrow \mathbb{R}$ be such that
(i) $f^{(n-1)}(x)$ is continuous on $[a, b]$
(ii) $f^{(n-1)}(x)$ is differentiable on (a, b) and $p \in \mathbb{Z}^{+}$then there exist a point $c \in(a, b)$ such that

$$
f(b)=f(a)+\frac{(b-a)}{1!} f^{\prime}(a)+\frac{(b-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(b-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\ldots . .+\frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+R_{n}
$$

where $R_{n}=\frac{(b-a)^{p}(b-c)^{n-p}}{(n-1)!p} f^{(n)}(c)$ is called the remainder after n terms
Suppose $R_{n} \rightarrow 0$ as $n \rightarrow \infty$, then

$$
\begin{equation*}
f(x)=f(a)+\frac{(x-a)}{1!} f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\ldots . .+\frac{(x-a)^{n}}{n!} f^{n}(a)+\ldots . \tag{1}
\end{equation*}
$$

which is called Taylor's series expansion of $f(x)$ about $x=a$
Put $a=0$ in (1), we get
$f(x)=f(0)+\frac{x}{1!} f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\ldots .+\frac{x^{n}}{n!} f^{n}(0)+\ldots .$, which is called Maclaurin's series expansion of $f(x)$

Multiple Choice Questions:

1. $\Gamma\left(-\frac{1}{2}\right)=$
A) $\sqrt{\pi}$
B) $2 \sqrt{\pi}$
C) $-2 \sqrt{\pi}$
D) $-\sqrt{\pi}$

Answer: C
2. $\int_{0}^{1} x^{5}(1-x)^{3} d x=$ \qquad
A) $\beta(6,4)$
B) $\beta(5,3)$
C) $\beta(7,5)$
D) $\beta(6,3)$

Answer: A
3. $\int_{0}^{\infty} x^{6} e^{-x} d x=\ldots \ldots$
A) 4 !
B) 6 !
C) 5 !
D) 7 !

Answer: B
4. $\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)=$ \qquad
A) $2 \sqrt{\pi}$
B) $-2 \sqrt{\pi}$
C) $\pi \sqrt{2}$
D) $-\pi \sqrt{2}$

Answer: C
5. $\int_{0}^{\infty} \frac{x^{10}-x^{18}}{(1+x)^{30}} d x=$ \qquad
A) 0
B) 1
C) 2
D) 3

Answer: A
6. $\int_{0}^{1}\left(\log _{e} \frac{1}{x}\right)^{3} d x=\ldots \ldots$
A) 24
B) 6
C) 12
D) 10

Answer: B
7. If $f(x)=x^{4}+x^{2}-2$ satisfies the conditions of Rolle's theorem on $[a, b]$ and $a=-1$ then $b=\ldots$.
A) 2
B) -2
C) 1
D) -1

Answer: C
8. The Lagrange's mean value theorem is satisfied for $f(x)=x^{3}+5 x$ in $[1,4]$ at a value of $x=\ldots$.
A) $\sqrt{5}$
B) $\sqrt{6}$
C) $\sqrt{7}$
D) $\sqrt{11}$

Answer: C
9. If $a+b+c=0$ then one of the roots of the equation $3 a x^{2}+2 b x+c=0$ lies in the interval \ldots.
A) $(-1,1)$
B) $(0,1)$
C) $(1,2)$
D) $(-1,0)$

Answer: B
10. The value of ' c ' of Cauchy's mean value theorem for $f(x)=e^{x}$ and $g(x)=e^{-x}$ in [2,6] is
A) 4
B) 5
C) 3.5
D) 3

Answer: A

11. Which of the following theorem is known as higher mean value theorem?
A) Rolle's theorem
B) Lagrange's mean value theorem
C) Cauchy's mean value theorem
D) Taylor's theorem

Answer: D
12. Maclaurin's series expansion of $\tan ^{-1} x$ is \ldots.
A) $x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\ldots .$.
A) $1+\frac{x^{2}}{2}+\frac{x^{4}}{4}+\frac{x^{6}}{6}+\ldots \ldots$.
B) $x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \ldots$
B) $1-\frac{x^{2}}{2}+\frac{x^{4}}{4}-\frac{x^{6}}{6}+\ldots \ldots$

Answer: B

UNIT-V: Functions of Several Variables

Partial derivative: A partial derivative of a function of several variables is the ordinary derivative with respect to one of the variables when all the remaining variables are held constant.
Let $z=f(x, y)$ be a function of two variables x, y.
$>$ The derivative of z with respect to x, treating y as constant, is called the partial derivative of z with respect to x and is denoted by $\frac{\partial z}{\partial x}$ or z_{x}. Thus $\frac{\partial z}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x, y)-f(x, y)}{\Delta x}$
Similarly, the derivative of z with respect to y, treating x as constant, is called the partial derivative of z with respect to y and is denoted by $\frac{\partial z}{\partial y}$ or z_{y}. Thus $\frac{\partial z}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$ Partial derivatives of second order, of a function $f(x, y)$ are calculated by successive differentiation. Thus if $z=f(x, y)$ then

$$
\frac{\partial^{2} z}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right)=z_{x x}, \frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right)=z_{x y}, \frac{\partial^{2} z}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right)=z_{x y} \quad \text { and } \quad \frac{\partial^{2} z}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right)=z_{y y}
$$

Note: A function of 2 variables has 2 first order partial derivatives, 2^{2} second order partial derivatives, 2^{3} third order partial derivatives and so on.
Total derivative: Total differential of a function u of three variables x, y, z is denoted by $d u$ and is defined as $d u=\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y+\frac{\partial u}{\partial z} d z$
Chain rule: If $u=f(x, y, z)$, where x, y, z are functions of a variable t then the total derivative
of u is defined as $\frac{d u}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+\frac{\partial u}{\partial z} \frac{d z}{d t} \ldots$ (i)
Corollary: If $t=x$, (i) becomes, $\frac{d u}{d x}=\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y} \frac{d y}{d x}+\frac{\partial u}{\partial z} \frac{d z}{d x}$
Differentiation of implicit function: If $f(x, y)=c$ be an implicit relation between x and y which defines as a differentiable function of x, then $\frac{d y}{d x}=-\frac{\partial f}{\partial x} / \frac{\partial f}{\partial y}$
Jacobians: Jacobians are functional determinants (whose elements are functions) which are very useful in transformation of variables from cartesian to polar, cylindrical and spherical coordinates in multiple integrals.
Definition: If u and v are functions of two independent variables x and y, then the determinant $\left|\begin{array}{ll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}\end{array}\right|$ is called Jacobian of u, v with respect to x, y and is written as $\frac{\partial(u, v)}{\partial(x, y)}$ or $J\left(\frac{u, v}{x, y}\right)$

Similarly, the Jacobian of u, v, w with respect to x, y, z is $\frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\ \frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}\end{array}\right|$

Properties of Jacobians:

i) If $J=\frac{\partial(u, v)}{\partial(x, y)}$ and $J^{\prime}=\frac{\partial(x, y)}{\partial(u, v)}$ then $J J^{\prime}=1$
ii) Chain rule of Jacobians: If u, v are functions of r, s and r, s are functions of x, y then

$$
\frac{\partial(u, v)}{\partial(r, s)} \times \frac{\partial(r, s)}{\partial(x, y)}=\frac{\partial(u, v)}{\partial(x, y)}
$$

Functional Dependence: Let $u=f(x, y), v=g(x, y)$ be two given differentiable functions of the two independent variables x and y. Suppose these functions u and v are connected by a relation $F(u, v)=0$, where F is differentiable. We say that u and v are functionally dependent on one another if u_{x}, u_{y}, v_{x} and v_{y} not all zero simultaneously.
$>$ If u, v, w be functions of three independent variables x, y, z then u, v, w are functionally

$$
\text { dependent (related) if and only if } \frac{\partial(u, v, w)}{\partial(x, y, z)}=0
$$

Maxima and Minima of functions of two variables:

$>$ A function $f(x, y)$ is said to have a maximum value at $x=a, y=b$ if $f(a, b)>f(a+h, b+k)$ for all positive or negative small values of h and k.
$>$ A function $f(x, y)$ is said to have a minimum value at $x=a, y=b$ if $f(a, b)<f(a+h, b+k)$ for all positive or negative small values of h and k.
Geometrically $z=f(x, y)$ represents a surface. The maximum is a point on the surface (hill top) from which the surface descends (comes down) in every direction towards the $x y$-plane (Fig (a)). The minimum is the bottom of depression from which the surface ascends (climbs up) in every direction (Fig (b)).Besides these, we have such a point of the surface, where the tangent plane is horizontal and the surface looks like leather seat on horse's back (Fig (c)) which falls displacement in certain directions and rises for displacements in another directions. Such a point is called a saddle point.

(a)

(b)

(c)

Conditions for Maxima and Minima of functions of $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$:
The necessary conditions for $f(x, y)$ to have a maximum or minimum at (a, b) are that

$$
\frac{\partial f(a, b)}{\partial x}=0, \frac{\partial f(a, b)}{\partial y}=0
$$

Stationary point: The point (a, b) is called a stationary point if $f_{x}(a, b)=0, f_{y}(a, b)=0$
Stationary value: $f(a, b)$ is said to be a stationary value of $f(x, y)$ if $f_{x}(a, b)=0, f_{y}(a, b)=0$ i.e., the function is stationary at (a, b).

Extreme value: A maximum or minimum value of a function is called its extreme value.
Working rule to find the maximum and minimum values of $f(x, y)$:
1.Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ and equate each to zero. Solve these as simultaneous equations in x and y.

Let $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$ be the pairs of values and are called stationary points of $f(x, y)$
2. Calculate $r=\frac{\partial^{2} f}{\partial x^{2}}, s=\frac{\partial^{2} f}{\partial x \partial y}, t=\frac{\partial^{2} f}{\partial y^{2}}$ at each of the stationary point.
3. (i) If $r t-s^{2}>0$ and $r<0$ at $\left(a_{1}, b_{1}\right)$ then f has a maximum at $\left(a_{1}, b_{1}\right)$ and $f_{\max }=f\left(a_{1}, b_{1}\right)$
(ii) If $r t-s^{2}>0$ and $r>0$ at $\left(a_{1}, b_{1}\right)$ then f has a minimum at $\left(a_{1}, b_{1}\right)$ and $f_{\min }=f\left(a_{1}, b_{1}\right)$
(iii) If $r t-s^{2}<0$ at $\left(a_{1}, b_{1}\right)$ then f has neither maximum nor minimum at $\left(a_{1}, b_{1}\right)$ i.e., $\left(a_{1}, b_{1}\right)$ is a saddle point.
(iv) If $r t-s^{2}=0$ at $\left(a_{1}, b_{1}\right)$, no conclusion can be drawn about maximum or minimum and it needs further investigation
Similarly examine the pair of values $\left(a_{2}, b_{2}\right),\left(a_{3}, b_{3}\right), \ldots$. one by one
Lagrange's Method of undetermined multipliers: Let $f(x, y, z)$ be a function of three variables x, y, z which are connected by the relation $\phi(x, y, z)=0 \ldots$ (1)
Consider the Lagrangian function $F(x, y, z)=f(x, y, z)+\lambda \phi f(x, y, z)$, where λ is the Lagrangian multiplier
For maxima or minima of $F(x, y, z)$, we have

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0 \text { i.e., } \frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}=0 \tag{2}\\
& \frac{\partial F}{\partial y}=0 \text { i.e., } \frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}=0 \tag{3}\\
& \frac{\partial F}{\partial z}=0 \text { i.e., } \frac{\partial f}{\partial z}+\lambda \frac{\partial \phi}{\partial z}=0 \tag{4}
\end{align*}
$$

On solving (1),(2),(3) and (4), we can find the values of x, y, z and λ for which $f(x, y, z)$ has stationary value.
Note: This method gives us the stationary value of a given function. But we cannot determine the nature of stationary points. However, this can be decided by physical or geometrical considerations.

Multiple Choice Questions:

1. If $z=x^{2}+y^{2}$, where $x=e^{t} \sin t, y=e^{t} \cos t$ then $\frac{d z}{d t}$ at $t=0$ is . \qquad
A) 2
B) 4
C) 6
D) 8

Answer: A
2. If $u=e^{x^{2}+y^{2}}$ then $\frac{\partial^{2} u}{\partial x \partial y}=\ldots \ldots$.
A) $x y u$
B) $2 x y u$
C) $4 x y u$
D) $8 x y u$

Answer: C
3. If $y e^{x y}=\cos x$ then $\frac{d y}{d x}$ at $(0,1)=\ldots$.
A) 1
B) -1
C) 0
D) 2

Answer: B
4. Let $w=\phi(x, y)$, where x, y are functions of t. Then, according to chain rule, $\frac{d w}{d t}=\ldots$.
A) $\frac{\partial x}{\partial t} \frac{d \phi}{d x}+\frac{\partial y}{\partial t} \frac{d \phi}{d y}$
B) $\frac{\partial \phi}{\partial x} \frac{d x}{d t}+\frac{\partial \phi}{\partial y} \frac{d y}{d t}$
C) $\frac{d \phi}{d x} \frac{d x}{d t}+\frac{d \phi}{d y} \frac{d y}{d t}$
D) $\frac{\partial \phi}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial \phi}{\partial y} \frac{\partial y}{\partial t}$

Answer: B

5. If $u=x(1+y), v=y(1+x)$ then the value of $\frac{\partial(u, v)}{\partial(x, y)}$ at $x=1 \& y=1$ is
A) 1
B) 2
C) 3
D) 4

Answer: C
6. If $u=\frac{x}{y}, v=\frac{x+y}{x-y}$ are functionally related then the functional relation between them is \ldots...
A) $v=\frac{u+1}{u-1}$
B) $u=\frac{v+1}{v-1}$
C) $u=\frac{1+v}{1-v}$
D) $v=\frac{1+u}{1-u}$

Answer: A

7. If $u=2 x-y, v=y+2 z, w=x-3 z$ then the value of $\frac{\partial(u, v, w)}{\partial(x, y, z)}=$ \qquad
A) -2
B) 4
C) 3
D) 2

Answer: B
8. Which of the following statement is not TRUE?
A) Two functions $u=f(x, y), v=g(x, y)$ are functionally dependent if $\frac{\partial(u, v)}{\partial(x, y)}=0$
B) If $\frac{\partial(u, v)}{\partial(x, y)} \neq 0$ then $u=f(x, y), v=g(x, y)$ are functionally independent
C) The functions $u=e^{x} \sin y, v=e^{x} \cos y$ are functionally dependent
D) If $J=\frac{\partial(u, v, w)}{\partial(x, y, z)}$ and $J^{*}=\frac{\partial(x, y, z)}{\partial(u, v, w)}$ then $J \times J^{*}=1$

Answer: C
9. Which of the following is a stationary point of $f(x, y)=x^{2}+y^{2}-6 x+12$
A) $(0,3)$
B) $(3,0)$
C) $(0,2)$
D) $(0,0)$

Answer: B

10. If $(0,0),(2,0)$ are extreme points of $f(x, y)=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+7$ then $f_{\text {min. }}=\ldots \ldots$.
A) 7
B) -8
C) 2
D) 3

Answer: D

11. If $r=f_{x x}(a, b), s=f_{x y}(a, b), t=f_{y y}(a, b)$, then $f(x, y)$ will have maximum at (a, b) if
A) $\left(r t-s^{2}\right)>0$ and $r>0$
B) $\left(r t-s^{2}\right)>0$ and $r<0$
C) $\left(r t-s^{2}\right)<0$ and $r>0$
D) $\left(r t-s^{2}\right)<0$ and $r<0$

Answer: B

12. If $r=f_{x x}(a, b), s=f_{x y}(a, b), t=f_{y y}(a, b) \&\left(r t-s^{2}\right)<0$ then $f(x, y)$ will have
A) maximum at (a, b)
B) minimum at (a, b)
C) neither maximum nor minimum at (a, b)
D) either maximum or minimum at (a, b)

Answer: C

SOME USEFUL FORMULAE

1. TRIGONOMETRY

- $\sin ^{2} x+\cos ^{2} x=1$
- $\sec ^{2} x-\tan ^{2} x=1$
- $\operatorname{cosec}^{2} x-\cot ^{2} x=1$
- $\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y$
- $\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$
- $\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$
- $\sin 2 x=2 \sin x \cos x=\frac{2 \tan x}{1+\tan ^{2} x}$
- $\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x=\frac{1-\tan ^{2} x}{1+\tan ^{2} x} \quad$ - $\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
- $\sin x \cos y=\frac{1}{2}[\sin (x+y)+\sin (x-y)]$
- $\cos x \sin y=\frac{1}{2}[\sin (x+y)-\sin (x-y)]$
- $\cos x \cos y=\frac{1}{2}[\cos (x+y)+\cos (x-y)]$
- $\sin x \sin y=\frac{1}{2}[\cos (x-y)-\cos (x+y)]$
- $\sin 3 x=3 \sin x-4 \sin ^{3} x$
- $\cos 3 x=4 \cos ^{3} x-3 \cos x$
- $\sinh x=\frac{e^{x}-e^{-x}}{2}$
- $\cosh x=\frac{e^{x}+e^{-x}}{2}$
- $\sinh 2 x=2 \sinh x \cosh x$
- $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x$
$\because \cosh ^{2} x-\sinh ^{2} x=1$
- $\sinh ^{2} x=\frac{1}{2}(\cosh 2 x-1)$
- $\cosh ^{2} x=\frac{1}{2}(\cosh 2 x+1)$
- $\sinh 3 x=3 \sinh x+4 \sinh ^{3} x$
- $\cosh 3 x=4 \cosh ^{3} x-3 \cosh x$
- $\sinh (x \pm y)=\sinh x \cosh y \pm \cosh x \sinh y \quad$ - $\cosh (x \pm y)=\cosh x \cosh y \pm \sinh x \sinh y$
- $\tanh (x \pm y)=\frac{\tanh x \pm \tanh y}{1 \pm \tanh x \tanh y} \quad$ • $e^{i a x}=\cos a x+i \sin a x$
- $\operatorname{Re}\left(e^{i a x}\right)=\cos a x$
- $\operatorname{Im}\left(e^{i a x}\right)=\sin a x$
- $\tan i x=i \tanh x$
- $\sin i x=i \sinh x$
- $\sinh 0=\frac{e^{0}-e^{-0}}{2}=0$
- $\cos i x=\cosh x$
- $\cosh 0=\frac{e^{0}+e^{-0}}{2}=1$
- $\sinh ^{-1}(x / a)=\log \left(x+\sqrt{x^{2}+a^{2}}\right)$
- $\cosh ^{-1}(x / a)=\log \left(x+\sqrt{x^{2}-a^{2}}\right)$
- $\tanh ^{-1}(x / a)=\frac{1}{2} \log \left(\frac{a+x}{a-x}\right)$
- If n is a positive integer then,
$\sin n \pi=\sin 2 n \pi=\sin (2 n \pm 1)=0, \cos n \pi=(-1)^{n}, \cos 2 n \pi=1, \cos (2 n \pm 1)=-1$
- $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
- $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}$
- $\sin ^{-1} x+\sin ^{-1} y=\sin ^{-1}\left(x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}\right)$
- $\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)$

2. DIFFERENTIATION

- $\frac{d}{d x}(u v)=u v^{\prime}+u^{\prime} v$
- $\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v^{2} u^{\prime}-u v^{\prime}}{v^{2}}$
- $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
- $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- $\frac{d}{d x}\left(a^{x}\right)=a^{x} \log a$
- $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x} \log _{a} e$
- $\frac{d}{d x}\left(\log _{e} x\right)=\frac{1}{x} \log _{e} e=\frac{1}{x}$
- $\frac{d}{d x}(\sin x)=\cos x$
- $\frac{d}{d x}(\cos x)=-\sin x$
- $\frac{d}{d x}(\tan x)=\sec ^{2} x$
- $\frac{d}{d x}(\sec x)=\sec x \tan x$
- $\frac{d}{d x}(\operatorname{cosec} x)=-\operatorname{cosec} x \cot x$
- $\frac{d}{d x}(\cot x)=-\operatorname{cosec}^{2} x$
- $\frac{d}{d x}(\sinh x)=\cosh x$
- $\frac{d}{d x}(\cosh x)=\sinh x$
- $\frac{d}{d x}(\tanh x)=\operatorname{sech}^{2} x$
- $\frac{d}{d x}(\operatorname{sech} x)=-\operatorname{sech} x \tanh x \quad$ - $\frac{d}{d x}(\operatorname{cosech} x)=-\operatorname{cosech} x \operatorname{coth} x \quad$ • $\frac{d}{d x}(\operatorname{coth} x)=-\operatorname{cosech}^{2} x$
- $\frac{d}{d x}\left[\sin ^{-1}\left(\frac{x}{a}\right)\right]=\frac{1}{\sqrt{a^{2}-x^{2}}} \cdot \frac{d}{d x}\left[\cos ^{-1}\left(\frac{x}{a}\right)\right]=-\frac{1}{\sqrt{a^{2}-x^{2}}}$
- $\frac{d}{d x}\left[\tan ^{-1}\left(\frac{x}{a}\right)\right]=\frac{a}{a^{2}+x^{2}}$
- $\frac{d}{d x}\left[\sinh ^{-1}\left(\frac{x}{a}\right)\right]=\frac{1}{\sqrt{a^{2}+x^{2}}} \cdot \frac{d}{d x}\left[\cosh ^{-1}\left(\frac{x}{a}\right)\right]=\frac{1}{\sqrt{x^{2}-a^{2}}}$
- $\frac{d}{d x}\left[\tanh ^{-1}\left(\frac{x}{a}\right)\right]=\frac{a}{a^{2}-x^{2}}$
- $\frac{d}{d x}[\log f(x)]=\frac{f^{\prime}(x)}{f(x)}$
- $\frac{d}{d x}\left[e^{f(x)}\right]=e^{f(x)} f^{\prime}(x)$
- $\frac{d}{d x}[\sqrt{f(x)}]=\frac{f^{\prime}(x)}{2 \sqrt{f(x)}}$
- $\frac{d}{d x}\left[\frac{1}{f(x)}\right]=-\frac{f^{\prime}(x)}{[f(x)]^{2}}$
- $\frac{d}{d x}\left\{[f(x)]^{n+1}\right\}=(n+1)[f(x)]^{n} f^{\prime}(x)$

3. INTEGRATION

- $\int x^{n} d x=\frac{x^{n+1}}{n+1}, n \neq-1$
- $\int e^{x} d x=e^{x}$
- $\int a^{x} d x=\frac{a^{x}}{\log a}, a \neq 1$
- $\int \frac{1}{x} d x=\log x$
- $\int \sec ^{2} x d x=\tan x$
- $\int \operatorname{cosec}^{2} x d x=-\cot x$
- $\int \operatorname{sech}^{2} x d x=\tanh x$
- $\int \operatorname{sech} x \tanh x d x=-\operatorname{sech} x \quad$ - $\int \sec x d x=\log |\sec x+\tan x|=\log \left|\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right|$
- $\int \operatorname{cosec} x d x=\log |\operatorname{cosec} x-\cot x|=\log \left|\tan \frac{x}{2}\right| \quad \bullet \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)=-\cos ^{-1}\left(\frac{x}{a}\right)$
- $\int \frac{d x}{a^{2}+x^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)$
- $\int \frac{d x}{\sqrt{a^{2}+x^{2}}}=\sinh ^{-1}\left(\frac{x}{a}\right)=\log \left(x+\sqrt{a^{2}+x^{2}}\right)$
- $\int[f(x)]^{n} f^{\prime}(x) d x=\frac{[f(x)]^{n+1}}{n+1}, n \neq-1$
- $\int \frac{d x}{\sqrt{x^{2}-a^{2}}}=\cosh ^{-1}\left(\frac{x}{a}\right)=\log \left(x+\sqrt{x^{2}-a^{2}}\right)$
- $\int \frac{f^{\prime}(x)}{f(x)}=\log |f(x)|$
- $\int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}$
- $\int \frac{f^{\prime}(x)}{\sqrt{f(x)}}=2 \sqrt{f(x)}$
- $\int \frac{d x}{\sqrt{x}}=2 \sqrt{x}$
- $\int \cot x d x=\log |\sin x|$
- $\int \tan x d x=\log |\sec x|=-\log |\cos x|$
- $\int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left(\frac{a+x}{a-x}\right) \cdot \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left(\frac{x-a}{x+a}\right) \quad \bullet \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)$

Integration by parts: If u and v are functions of x, then $\int u v d x=u \int v d x-\int\left\{\frac{d u}{d x} \int v d x\right\} d x$ where $u=$ first function, $v=$ second function. Here the first function is the function which comes first in the word ILATE.

- $\int e^{a x} f(x) d x=\frac{e^{a x}}{a}\left[f(x)-\frac{f^{\prime}(x)}{a}+\frac{f^{\prime \prime}(x)}{a^{2}}-\frac{f^{\prime \prime}(x)}{a^{3}}+\ldots\right] \quad$ - $\int e^{x} x d x=e^{x}(x-1)$
- $\int e^{-x} x d x=-e^{-x}(x+1)$ - $\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)$
- $\int \sqrt{a^{2}+x^{2}} d x=\frac{x}{2} \sqrt{a^{2}+x^{2}}+\frac{a^{2}}{2} \sinh ^{-1}\left(\frac{x}{a}\right)$
- $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \cosh ^{-1}\left(\frac{x}{a}\right)$
- $\int e^{a x} \sin (b x+c) d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin (b x+c)-b \cos (b x+c)]$
- $\int e^{a x} \cos (b x+c) d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos (b x+c)+b \sin (b x+c)]$

Properties of definite integrals:

- $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y \quad$ - $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x \quad$ - $\int_{a}^{a} f(x) d x=0$
- If $a<c<b$ then $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
- $\int_{a}^{b} f(x) d x=\int_{a}^{q} f(x) d x+\int_{c_{1}}^{c_{2}} f(x) d x+\ldots+\int_{c_{n}}^{b} f(x) d x$, where $a<c_{1}<c_{2}<\ldots<c_{n}<b$
- $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x \quad \bullet \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
- $\int_{-a}^{a} f(x) d x=\left\{\begin{array}{cc}2 \int_{0}^{a} f(x) d x & \text { if } f(-x)=f(x) \\ 0 & \text { if } f(-x)=-f(x)\end{array} \quad\right.$ - $\int_{0}^{2 a} f(x) d x=\left\{\begin{array}{cl}2 \int_{0}^{a} f(x) d x & \text { if } f(2 a-x)=f(x) \\ 0 & \text { if } f(2 a-x)=-f(x)\end{array}\right.$
- $\int_{0}^{\pi / 2} \sin ^{n} x d x=\int_{0}^{\pi / 2} \cos ^{n} x d x=\left\{\begin{array}{l}\left(\frac{n-1}{n}\right) \cdot\left(\frac{n-3}{n-2}\right) \cdot\left(\frac{n-5}{n-4}\right) \cdots \cdots \cdot \frac{1}{2} \cdot \frac{\pi}{2}, \text { if } n \text { is even } \\ \left(\frac{n-1}{n}\right) \cdot\left(\frac{n-3}{n}\right) \cdot\left(\frac{n-5}{n-4}\right) \cdots \cdots \cdot \frac{2}{3} \cdot 1, \text { if } n \text { is odd }\end{array}\right.$
$\cdot \int_{0}^{\pi / 2} \sin ^{m} x \cos ^{n} x d x=\frac{[(m-1)(m-3)(m-5) \ldots \ldots][(n-1)(n-3)(n-5) \ldots \ldots]}{[(m+n)(m+n-2)(m+n-4) \ldots \ldots]} \times k$
where k is $\pi / 2$ if m and n are even otherwise k is 1
- $\int_{0}^{\infty} \frac{\sin m x}{x} d x=\frac{\pi}{2} \quad(m>0)$
- $\int_{-\infty}^{x} e^{-x^{2}} d x=\sqrt{\pi}$
- $\int_{-\infty}^{0} e^{-x^{2}} d x=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$
- $\int_{0}^{\infty} e^{-a x} \sin (b x+c) d x=\frac{b}{a^{2}+b^{2}}$
- $\int_{0}^{\infty} e^{-a x} \cos (b x+c) d x=\frac{a}{a^{2}+b^{2}}$

- Leibnitz's rule of integration by parts:

$\int u v d x=u v_{1}-u^{\prime} v_{2}+u^{\prime \prime} v_{3}-u^{\prime \prime \prime} v_{4}+\ldots \ldots$.
where superscript (') denotes differentiation, i.e., $u^{\prime \prime}$ denotes differentiation of u thrice and subscript number denotes number of times of integration i.e., v_{2} denotes integration of v twice

4. SERIES

- $e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \ldots$
- $e^{-x}=1-\frac{x}{1!}+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots \ldots$
- $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+$. - $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots \ldots$
- $\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\ldots \ldots$
- $\cosh x=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\ldots \ldots$
- $\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots \ldots . \quad$ - $\log (1-x)=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots \ldots\right)$
$\cdot \tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\ldots \ldots . \quad \cdot \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots=\frac{\pi^{2}}{6}$
- If n is a rational number then
(i) $(1+x)^{n}=1+n x+\frac{n(n-1)}{1 \cdot 2} x^{2}+\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\ldots \ldots$.
(ii) $(1-x)^{-n}=1+n x+\frac{n(n+1)}{1 \cdot 2} x^{2}+\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\frac{n(n+1)(n+2)(n+3)}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}+\ldots \ldots$
(iii) $(1+x)^{-n}=1-n x+\frac{n(n+1)}{1 \cdot 2} x^{2}-\frac{n(n+1)(n+2)}{1 \cdot 2 \cdot 3} x^{3}+\frac{n(n+1)(n+2)(n+3)}{1 \cdot 2 \cdot 3 \cdot 4} x^{4}-\ldots \ldots$
- $(1+x)^{-1}=1-x+x^{2}-x^{3}+x^{4}-\ldots \ldots . \quad \bullet(1-x)^{-1}=1+x+x^{2}+x^{3}+x^{4}+\ldots \ldots$.
- $(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-\ldots \ldots$.
- $(1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+\ldots \ldots$
- $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots \ldots=\frac{\pi^{2}}{12}$
- $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots=\frac{\pi^{2}}{8}$

5. ALGEBRA

(i) Logarithms

- Natural logarithm $\log _{e} x$ has base e and is inverse of e^{x}
- Common logarithm $\log _{10} x$ has base 10 and is inverse of 10^{x}
- $\log _{a} 1=0 \quad$ - $\log _{a} a=1 \quad \bullet \log _{a} m n=\log _{a} m+\log _{a} n \quad \bullet \log _{a}(m / n)=\log _{a} m-\log _{a} n$
- $\log m^{n}=n \log m \quad$ - $e^{\log f(x)}=f(x)$
(ii) Progressions
- Numbers $a, a+d, a+2 d, \ldots \ldots$ are said to be in Arithmetic Progression (A.P). Its $n^{\text {th }}$ term $T_{n}=a+(n-1) d$ and the sum of first n terms $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
- Numbers $a, a r, a r^{2}, \ldots$. are said to be in Geometric Progression (G.P). Its $n^{\text {th }}$ term $T_{n}=a r^{n-1}$ and the sum of first n terms $S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \quad$ - $S_{\infty}=\frac{a}{1-r}(r<1)$
- If a and b be two numbers then their Arithmetic Mean (A.M) $=\frac{a+b}{2}$ Geometric Mean (G.M) $=\sqrt{a b}$ and Harmonic Mean (H.M) $=\frac{2 a b}{a+b}$
- For the first n natural numbers $1,2,3, \ldots, n$

$$
\sum_{1}^{n} k=\frac{n(n+1)}{2}, \sum_{1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}, \sum_{1}^{n} k^{3}=\frac{n^{2}(n+1)^{2}}{4}=\left(\sum_{1}^{n} k\right)^{2}
$$

(iii) Permutations and Combinations

- $n_{P_{r}}=\frac{n!}{(n-r)!}$
- $n_{C_{r}}=\frac{n!}{(n-r)!r!}$
- $n_{C_{r}}=n_{C_{n-r}}$
- $n_{C_{0}}=1=n_{C_{n}}$
- $n!=n(n-1)(n-2) \ldots \ldots 3 \cdot 2 \cdot 1 \quad$ - $0!=1$
- $n_{C_{r}}=n_{C}$, then either $r=s$ or $r+s=n$

(iv) Binomial Theorem

- If n is an integer then $(x+y)^{n}=n_{C_{0}} x^{n}+n_{C_{1}} x^{n-1} y+n_{C_{2}} x^{n-2} y^{2}+\ldots \ldots+n_{C_{r}} x^{n-r} y^{r}+\ldots \ldots+n_{C_{n}} y^{n}$
- The general term in $(x+y)^{n}$ is $T_{r+1}=n_{C_{r}} x^{n-r} y^{r}$

$$
\cdot n_{C_{0}}+n_{C_{1}}+n_{C_{2}}+\ldots . .+n_{C_{n}}=2^{n} \quad \cdot n_{C_{0}}+n_{C_{2}}+n_{C_{4}}+\ldots \ldots=n_{C_{1}}+n_{C_{3}}+n_{C_{5}}+\ldots \ldots=2^{n-1}
$$

