

VidyaJyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad) (Aziz Nagar, C.B.Post, Hyderabad -500075)

Department of Information Technology

Course File

Regulations	: R20
Batch	:2020-2024
Academic Year	:2021-2022
Program	:B.Tech. (IT)
Course Name	: Data Structures (DS)
Year / Sem.	:II/I

Gero

in tenter

Course Code

Pre-requisites

Course Coordinator

:A43504

: Programing for Problem Solving- I &II

: Mrs. K. Shireesha

Index

INDEX

S.NO.	ITEM DESCRIPTION					
1	Course Information Sheet					
2	Syllabus					
3	Text Books, Reference Books, Web/Internet Resources					
4	Time table					
5	Program Educational Objectives(PEOS) and Program Outcomes(POs)					
6	Program Specific Outcomes(PSOs)					
7	Course Outcomes(COs)					
8	Mapping of Course Outcomes, POs and PSOs					
9	Course Schedule					
10	Lecture Plan/Teaching Plan					
11	Unit wise Date of Completion and Remarks					
12	Assignment Questions					
13	Unit wise Question Bank					
14	Mid Question Papers					
15	End Exam papers					
16	Content Beyond Syllabus					
17	Unit wise PPTs and lecture notes					
18	CO Attainment - Direct and Indirect					
19	Course end survey form					

Syllabus

Syllabus

Unit – I	Data Structures: Introduction, Types of data structures, Static and Dynamic representation of data structure and comparison. Stacks: Stacks definition, operations on stacks, Representation and evaluation of expressions using Infix, Prefix and Postfix, Algorithms for conversions and evaluations of expressions from infix to prefix and postfix using stack. Queues: Types of Queues- Circular Queue, Deque and operations.
Unit – II	Trees: Basic terminologies, Types of Binary Tree: Complete and Full Binary Tree, Extended Binary Trees, Representation of Trees using Arrays and Linked lists (advantages and disadvantages), Tree Traversal, Representation of Algebraic expressions, Threaded Binary Trees.
Unit – III	Advanced concepts on trees: Representation and Creation of Binary Search Trees (BST), Operations on BST, Representation and advantages of AVL Trees, algorithms & operations on AVL Trees, Multi-way trees, Definition and advantages of B-trees, B+ Trees, Red-Black Trees.
Unit – IV	Graphs: Basic terminology, Representation of graphs: sequential representation, Adjacency, Path Matrix) Linked representation. Graph Traversals-Breadth First Search, Depth First Search algorithms. Spanning Tree, Minimum Spanning Trees- Prim's Algorithm, Kruskals Algorithm, Dijkstra Algorithm.
Unit – V	Hashing: General Idea, Hash Functions, collisions, Collision avoidance techniques, Separate Chaining ,Open Addressing-Linear probing, Quadratic Probing, Double Hashing, Rehashing, Extensible Hashing, Implementation of Dictionaries

Text Books & ReferenceBooks

Text Books, Reference Books/web sources

Text Books:

1.Data Structures Using C, 2nd Edition Reema Thereja OXFORD higherEducation

2.Fundamentals of Data Structures, 2ndHorowitz and Sahani, *Galgotia Publications* Pvt Ltd Delhi India.

Reference Books:

1.Data Structures, Seymour Lipschutz, Schaum's Outlines, Tata McGraw-Hill, Special Second Edition.

2.Data Structures Using C and C++I, Aaron M. Tenenbaum, YedidyahLangsam and Moshe J. Augenstein PHI Learning Private Limited, DelhiIndia.

3.Data Structures, A Pseudo code Approach with C, Richard F.Gillberg& Behrouz A. Forouzan, Cengage Learning, India Edition, Second Edition, 2005

Other Resources:

Vjit.ac.in/it/study-material/

Program Educational Objectives(PEOs)& Program Outcomes(POs)

Vidya Jyothi Institute of Technology (Affiliated to JNTUH)

AziznagarGate,C.B.Post,Hyderabad-500 075

Program Educational Objectives

(PEOs)

PEO1: Core Capabilities / Competence: Impart profound knowledge in humanities and basic sciences along with core engineering concepts for practical understanding and project development.

PEO2: Career Advancement: Enrich analytical and industry based technical skills through ICT for accomplishing research, higher education and entrepreneurship

PEO3: Life-Long Learning: Infuse life-long learning, professional ethics, adaptation to innovation and effective communication skills with a sense of social awareness.

Programme Outcomes (PO's)

- 1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **3.** Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5.** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8.** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9.** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Vidya Jyothi Institute of Technology (Affiliated to JNTUH)

AziznagarGate, C.B. Post, Hyderabad-500 075

DEPARTMENT OF INFORMATION TECHNOLOGY

Program Specific Outcomes

(PSOs)

PSO1: Enhanced ability in applying mathematical abstractions and algorithmic design along with programming tools to solve complexities involved in efficient programming.

PSO2: Developed effective software skills and documentation ability for graduates to become employable/ higher studies/ Entrepreneur/ Researcher.

Course Outcomes (Cos)

Course Outcomes (CO's)

Course Name: C204 (DATA STRUCTURES)

	After completing this course the student must demonstrate the knowledge and ability to					
C01	Understand the concepts of Stacks and Queues with their applications.					
CO2	Analyze various operations on Binary trees.					
CO3	Examine of various concepts of binary trees with real time applications.					
CO4	Analyze the shortest path algorithm on graph data structures.					
CO4 Analyze the shortest path algorithm on graph data structures. CO5 Outline the concepts of hashing, collision and its resolution methods using hash functions.						

Mapping of Course Outcomes, POs and PSOs

Course Schedule

Course Schedule:

Distribution of Hours in Unit-Wise

Unit	Topics	Reference section	Total No.Of.Hours
I	Introduction, Types of data structures, Static and Dynamic representation of data structure and comparison. Stacks: Stacks definition, operations on stacks, Representation and evaluation of expressions using Infix, Prefix and Postfix, Algorithms for conversions and evaluations of expressions from infix to prefix and postfix using stack. Queues: Types of Queues- Circular Queue, Deque and operations.	Text Book1	10
	Trees: Basic terminologies, Types of Binary Tree: Complete and Full Binary Tree, Extended Binary Trees, Representation of Trees using Arrays and Linked lists (advantages and disadvantages), Tree Traversal, Representation of Algebraic expressions, Threaded Binary Trees.	Text Book2	12
	Advanced concepts on trees: Representation and Creation of Binary Search Trees (BST), Operations on BST, Representation and advantages of AVL Trees, algorithms & operations on AVL Trees, Multi-way trees, Definition and advantages of B-trees, B+ Trees, Red-Black Trees.	Text Book2	10
	Graphs: Basic terminology, Representation of graphs: sequential representation, Adjacency, Path Matrix) Linked representation. Graph Traversals-Breadth First Search, Depth First Search logorithms. Spanning Tree, Minimum Spanning Trees- Prim's Algorithm, Kruskals Algorithm, Dijkstra Algorithm.	Text Book2	10
C te Q	Hashing: General Idea, Hash Functions, collisions, Collision avoidance echniques, Separate Chaining ,Open Addressing-Linear probing, Quadratic Probing, Double Hashing, Rehashing, Extensible fashing, Implementation of Dictionaries	Reference book3	12
	Total No.of classes		54
	Tutorial classes:2 per unit Assignments:2(before every mid1 and mid2 examination	ons)	and the second

TB1: Data Structures Using C, 2nd Edition Reema Thereja OXFORD higher Education **TB2**: Fundamentals of Data Structures, 2nd Horowitz and Sahani, *Galgotia Publications* Pvt Ltd Delhi India. **RB3**:Data Structures, A Pseudo code Approach with C, Richard F.Gillberg & Behrouz A. Forouzan, Cengage Learning, India Edition, Second Edition, 2005.

Lecture Plan / Teaching Plan

S. No.	Topic	Expected Date of Completion	Actual Dat Completi	36 million 1	Teaching Learning Process	Co's	Evaluation	Textbooks /references
			Unit-I (CO1)				
1	Introduction, Types of data structures,	20/9/2021	20/9			CO1	MID-1	TB1
2	Static and Dynamic representation of data structure and comparison.	21/9/2021	21/9			CO1	MID-1	TB1
3	Stacks: Stacks definition, operations on stacks,	22/9/2021	22 9	-	PPT	CO1	MID-1	TB1
4	Representation and evaluation of expressions using Infix	23/9/2021	22 9		and the	CO1	MID-1	TB1
5	Prefix and Postfix, Algorithms for conversions	24/9/2021	24/9			CO1	MID-1	TB1
6	Examples solved on infix to prefix conversions	25/9/2021	25/9		FLIPPED CLASS ROOM	CO1	MID-1	TB1
7	evaluations of expressions from infix to prefix	28/9/2021	28/9			CO1	MID-1	TB1
8	Postfix evaluation using stack.	1/10/2021	01/10			CO1	MID-1	TB1
9	Queues: Types of Queues- Circular Queue	2/10/2021	02/10	-		CO1	MID-1	TB1
10	Deque and operations.	4/10/2021	4/10			CO1	MID-1	TB1
UNIT	ТІ(СО2)							
1	Trees: Basic terminologies,	5/10/2021	5/10			CO2	MID-1	TB2
2	Types of Binary Tree: Complete Binary Tree	6/10/2021	6/10			CO2	MID-1	TB2
3	Full Binary Tree	8/10/2021	8/10			CO2	MID-1	TB2
4	Extended Binary Trees	9/10/2021	9 11	0		CO2	MID-1	TB2
5	Representation of Trees using Arrays	11/10/2021	10/10			CO2	MID-1	TB2
6	Representation of Trees using Arrays with example	12/10/2021	11/10	12/10		CO2	MID-1	TB2
7	Representation of Trees using Linked lists	15/10/2021	15/10		PPT	CO2	MID-1	TB2
8	Representation of Trees using Linked lists with example	16/10/2021	16/10			CO2	MID-1	TB2
9	advantages and disadvantages	20/10/2021	20 10			CO2	MID-1	TB2

TB1: Data Structures Using C, 2nd Edition Reema Thereja OXFORD higher Education TB2: Fundamentals of Data Structures, 2nd Horowitz and Sahani, *Galgotia Publications* Pvt Ltd Delhi India. **RB3:**Data Structures, A Pseudo code Approach with C, Richard F.Gillberg & Behrouz A. Forouzan, Cengage Learning, India Edition, Second Edition, 2005.

10	Tree Traversal with examples	22/10/2021	22/10	FLIPPED CLASS ROOM	CO2	MID-1	TB2
11	Representation of Algebraic expressions,	27/10/2021	27/10		CO2	MID-1	TB2
12	Threaded Binary Trees.	30/10/2021	20/10		CO2	MID-1	TB2
UNI	- III (CO3)	S Press State				1. 12.12 (3)	
1	Advanced concepts on trees: Representation	3/11/2021	3/11		CO3	MID-1	TB2
2	Creation of Binary Search Trees (BST)	5/11/2021	5/11		CO3	MID-1	TB2
3	Operations on BST	6/11/2021	6/11	in the second	CO3	MID-1	TB2
4	Representation and advantages of AVL Trees	9/11/2021	9/11	PPT	CO3	MID-1	TB2
5	Algorithms & operations on AVL Trees	19/11/2021	19/11		CO3	MID-2	TB2
6	Multi-way trees.	20/11/2021	20/11		CO3	MID-2	TB2
7	Definition and advantages of B- trees	22/11/2021	22/11		CO3	MID-2	TB2
8	B+ Trees	23/11/2021	21/11		CO3	MID-2	TB2
9	,Red-Black Trees	26/11/2021	26/11		CO3	MID-2	TB2
10	Examples on AVL tree construction	27/11/2021	27/11	FLIPPED CLASS ROOM	CO3	MID-2	TB2
UNIT	Г-IV (CO4)		and and and				
1	Graphs: Basic terminology	29/11/2021	29/11		CO4	MID-2	TB2
2	Representation of graphs: sequential representation, Adjacency, Path Matrix)	30/11/2021	20/11		CO4	MID-2	TB2
3	Adjacency Matrix and List	31/11/2021	21/11		CO4	MID-2	TB2
1	Linked representation.	1/12/2021	01/12	PPT	CO4	MID-2	
5	Graph Traversals-Breadth First Search	3/12/2021	2/12		CO4	MID-2	TB2
5	Depth First Search algorithms.	4/12/2021	4/12		CO4	MID-2	TB2
,	Spanning Tree, Minimum Spanning Trees	5/12/2021	5/12		CO4	MID-2	TB2
	- Prim's Algorithm	14/12/2019	14/12		CO4	MID-2	TB2
	Kruskals Algorithm, Dijkstra Algorithm	15/12/2021	15/12		CO4	MID-2	TB2

TB1: Data Structures Using C, 2nd Edition Reema Thereja OXFORD higher Education **TB2**: Fundamentals of Data Structures, 2nd Horowitz and Sahani, *Galgotia Publications* Pvt Ltd Delhi India.

RB3:Data Structures, A Pseudo code Approach with C, Richard F.Gillberg & Behrouz A. Forouzan, Cengage Learning, India Edition, Second Edition, 2005.

10	Examples on graph traversals	16/12/2021	16/12	FLIPPED CLASS ROOM	CO4	MID-2	TB2
UNIT	-V (CO5)	NS STREET STREET	Steel Astronome	State State	Service of	Contraction of the	
1	Hashing: General Idea, Hash Functions	18/12/2021	18/12		CO5	MID-2	RB3
2	Hash Functions	20/12/2021	20/12		CO5	MID-2	RB3
3	Collisions, Collision avoidance techniques	22/12/2021	22 12	PPT	CO5	MID-2	RB3
4	Separate Chaining	23/12/2021	23/12		CO5	MID-2	RB3
5	Open Addressing-Linear probing, Difference between open hashing and closed hashing	24/12/2021	24/12		CO5	MID-2	RB3
6	Linear probing with example	27/12/2021	27/12		CO5	MID-2	RB3
7	Quadratic Probing with examples	29/12/2021	29/12		CO5	MID-2	RB3
8	Double Hashing	30/12/2021	20/12		CO5	MID-2	RB3
9	Double Hashing with example	31/12/2021	31/12		CO5	MID-2	RB3
10	Rehashing with examples	4/01/2022	04/01		CO5	MID-2	RB3
11	Extensible Hashing	5/01/2022	05/01		CO5	MID-2	RB3
12	Implementation of Dictionaries	6/01/2022	06/01		CO5	MID-2	RB3
13	RIVISION	7/01/2022	07/01	FLIPPED CLASS ROOM	C05	MID-2	RB3
14	RIVISION	08/01/2022	10/80	FLIPPED CLASS ROOM	CO5	MID-2	RB3

TB1: Data Structures Using C, 2nd Edition Reema Thereja OXFORD higher Education **TB2**: Fundamentals of Data Structures, 2nd Horowitz and Sahani, *Galgotia Publications* Pvt Ltd Delhi India. RB3:Data Structures, A Pseudo code Approach with C, Richard F.Gillberg & Behrouz A. Forouzan, Cengage Learning, India Edition, Second Edition, 2005.

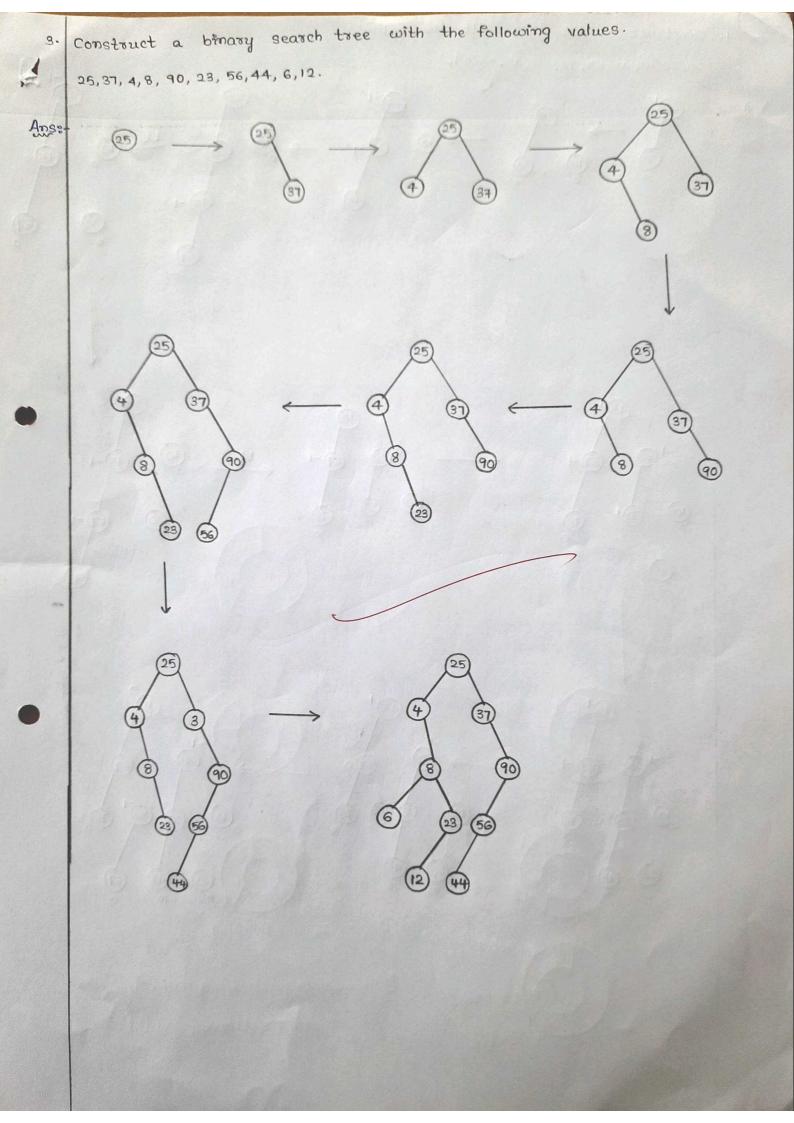
Unit wise Date of Completion and Remarks

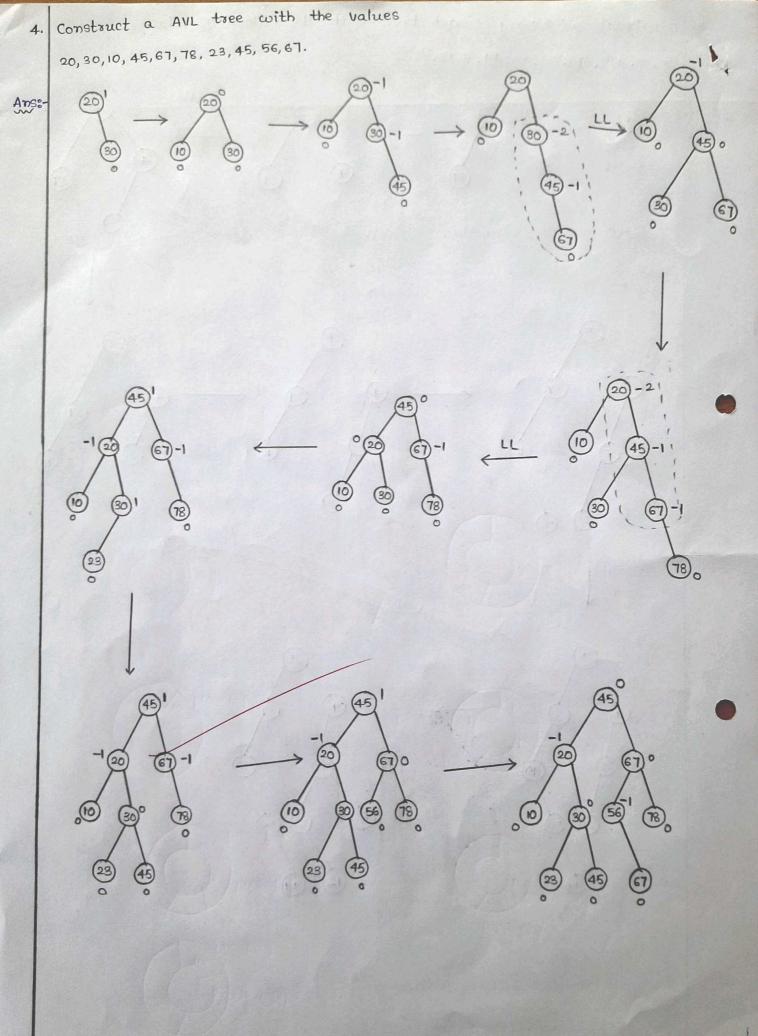
Date of Unit completion & Remarks

Unit – I	
Date:	4110/2021
Remarks:	Completed in time
Unit – II	
Date:	30 10 2021
Remarks:	Completed in time
Unit – III	
Date:	27/11/2021
Remarks:	Completed in time
Unit – IV	
Date:	16/12/2021
Remarks:	Completed in time
Unit – V	
Date:	810412072
Remarks:	Completed in time

Unit wise Assignment Questions

Assignment 1

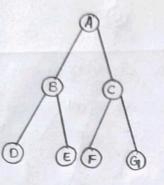

Uni	it-1
1	Convert the given expression A+B/(C*D)/E^F-(G*H) into prefix ,post fix notation. (Level-2,CO1)
2	Perform insertion operation on a circular queue 10,15,23,45,67,78,identify rear and front pointer positions after all insertions. (Level-3,CO1)
Uni	it-2
1	Construct a binary search tree with the following values 25,37,4,8,90,23,56,44,6,12 (Level-6,CO2)
2	Construct a AVL tree with the values 20,30,10,45,67,78,23,45,56,67 (Level-6,CO2)
Uni	t-3
1	Compare the different type of trees. (Level-3,CO3)

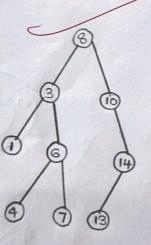

1.		Assignment -1	Name: P. Sai Kumax Roll No: 20911A12A9 Branch & sec: IJ-B Subject: DS
ય∙ ઙૢ⊙ું %-	Convert the given notation. Given, Infine expression Infine postfix:	expression $A+B/(C*)$ on $A+B/(C*D)/E^F-G$	*D)/EAE-(G*H) into prefire, postfire SOUTH *H)
	Imput Expression A + B / (c * D) / E A F - (G * H	Stack NIILL + + +/ +/(+/(* +/(* +/(* +/(* +/(* +/ +/ +/ +/ +/ +/ +/ +/ +/ +/	Postfix. A A AB AB AB ABC ABC ABCD ABCD* ABCD*/E ABCD*/E ABCD*/E ABCD*/EF ABCD*/EF ABCD*/EF ABCD*/EF^
		+/-(* +/-()	ABCD*/EF^GH ABCD*/EF^GH*

Postfire Expression: - ABCD */EF^GH *- /+

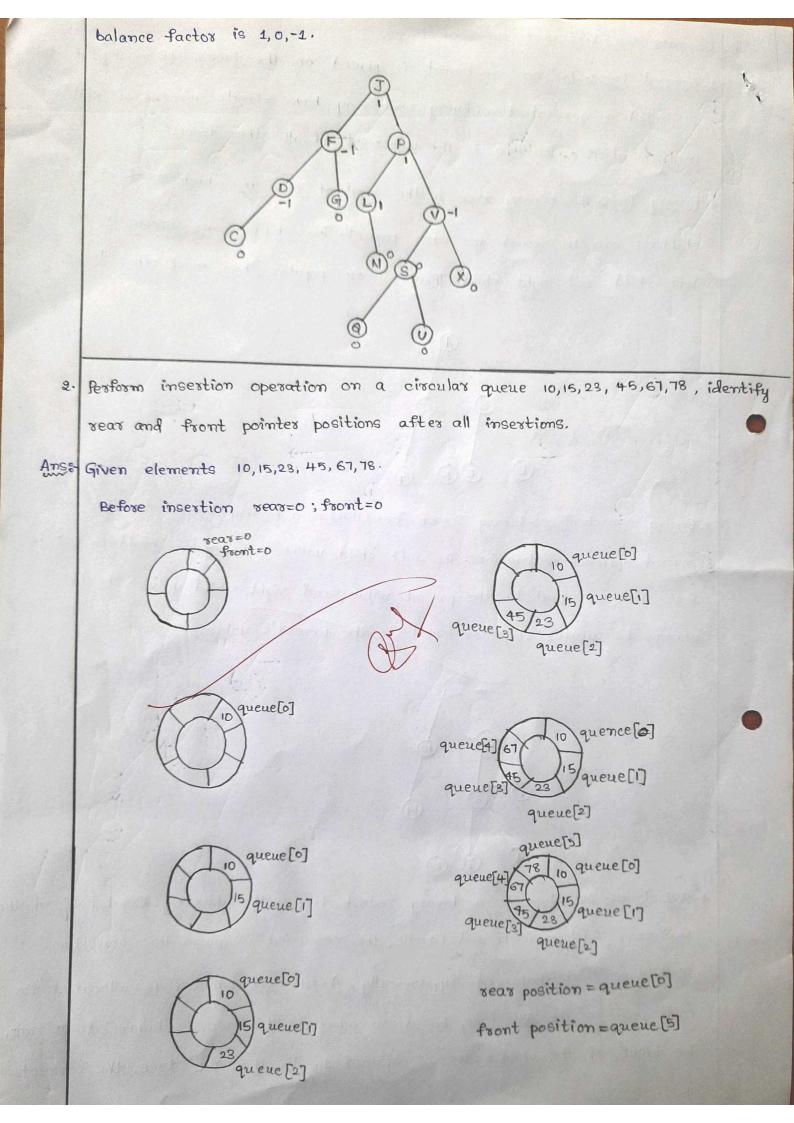
Infix to Prefix:-	(The second second	
(H*G)-F^E/(D*C)/B+A		2
Input Expression	stack	Postfire.
((NILL
н	(Н
*	(*	н
9	(*	на
)	()	HG*
-		HG*
F	-	HG* F
^	- ^ +	HG * F
E	- ^	HG * FE
	-/	HG * FE [^]
(-10	HG* FE
D	-10	HG*FE^D
*	-/(*	HG* FE [^] D
c	-10*	
)		HG*FE^DC
, , , , , , , , , , , , , , , , , , , ,	-1()	HG*FE^DC*
	-1	HG* FE^DC*/
В	-1	HG*FE^DC*/B
+ ALLADIA	-+	HG* FE DC */B
A	-+	HG* FE^DC*/B/A
P LIVE BAR		
50 11 0 1/1 14 - "	HG* FE 100 * /B A+ -	
Prefix	Expression: -+A/B/*	CD^EF*GH

Lust i Versal



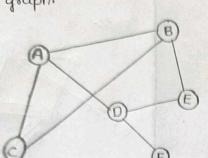

5. Compare the different types of trees.

these 1. General Trees - If no constraint is placed on the tree's hierarchy, a tree is called a general tree. Every node may have infinite number of children in General Tree. The tree is the super-set of all other trees.


2. Binary Tree: The binary tree is the kind of tree in which most of two children can be found for each parent. The children are known as the left child and right child. This is more popular than most other trees.

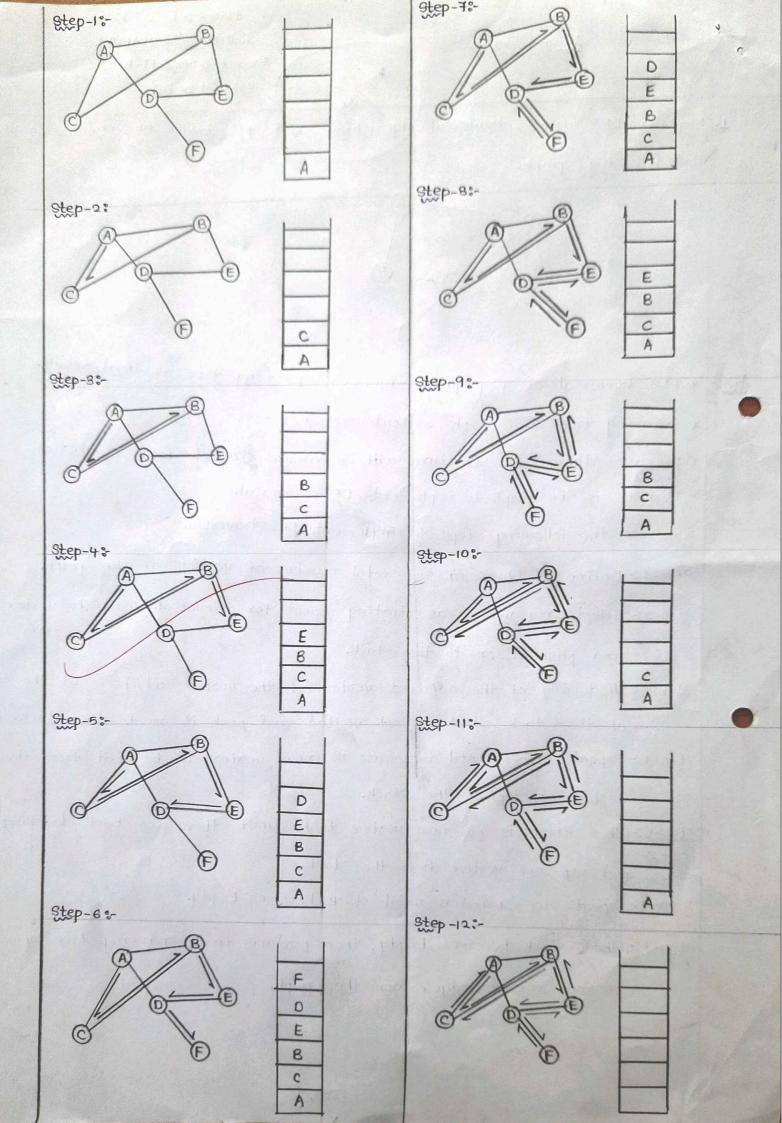
3. Binary Search Tree: Binary Search Tree (BST) is a binary tree extension with several optional restrictions. The left child value of a mode should in BST be less than or equal to the parent value, and right child value should always be greater than or equal to the parent's value.

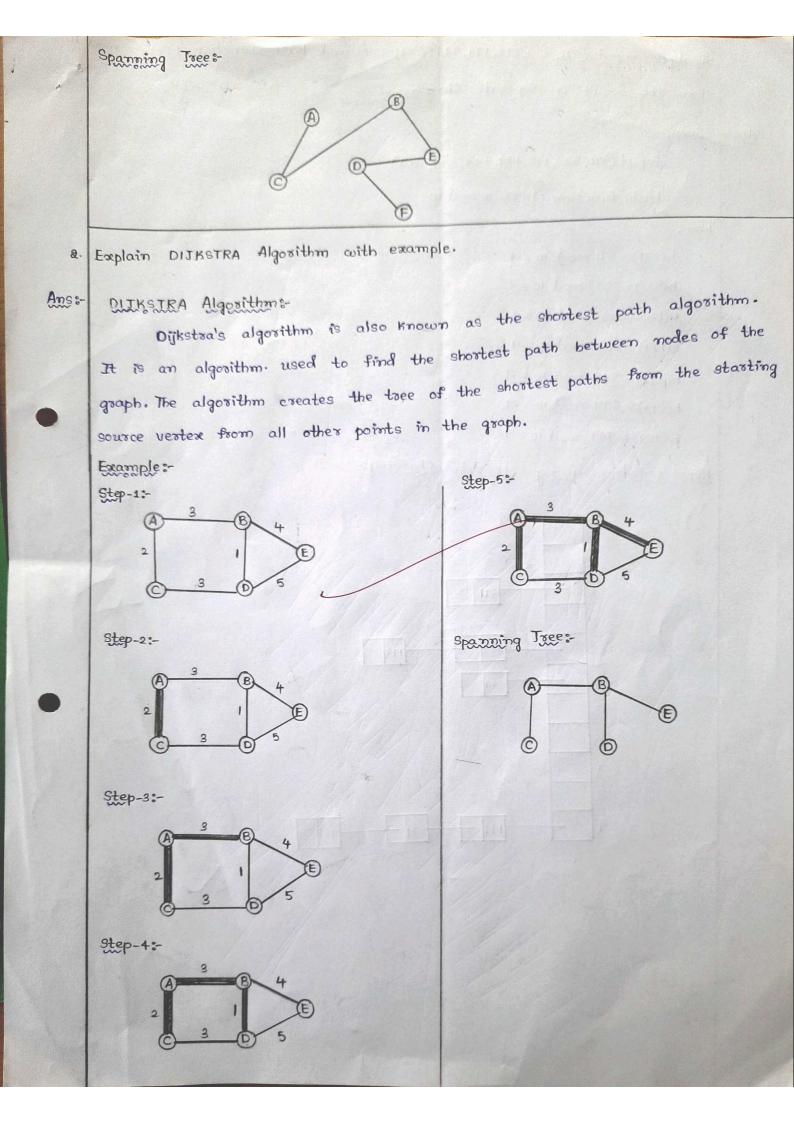
4. AUL Trees AVL tree is a binary search tree self balancing. On behalf of the inventors Adelson-Velshi and Landis, the name AVL is given. This was the first tree that balanced dynamically. A balancing factor is allocated for each node in the AVL tree, based on whether the tree is balanced or not. The hight of the child nodes is atmost 1. In the AVL tree, the correct


Assignment 2

Un	it-3
1	Explain DFS graphs traversal algorithms and Illustrate DFS traversals of following graph A C C (Level-3,CO3)
2	Explain DIJKSTRA Algorithm with example (Level-4,CO3)
Uni	t-4
1	Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using Separate Chaining. (Level-4,CO4)
2	Define Minimum Spanning tree? Explain prims's Algorithm with example. (Level-2,3,CO4)
Uni	t-5
1	Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result using quadratic probing. (Level-4,CO5)

Assignment -2.


Name: P. Sai Kumar Roll No: 20911A12A9 Branch & Sec: IT-B Subject: DS.


1. Explain DFS graphs traversal algorithms the following graph.

and Illustrate DFS traversals of

- Anse * DES traversal of a graph, produces a spanning tree as final result.
 - * Spanning tree is a graph without any loops.
 - * We use Stack data structure with maximum size of total number of vertices in the graph to implement DFS traversal.
 - We use the following steps to implement DFS traversal.
 - Step-1: Define a Stack of Size total number of vertices in the graph.
 - Step-2: Select any vertex as starting point for traversal. Visit the vertex
 - and push it on to the Stack.
 - Step-3: Visit any of the adjacent vertex of the vertex which is at the top of the Stack which is not visited and push it on to the stack. Step-4: Repeat Step-3 until there are no new vertex to be visit from the
 - vertex on top of the Stack.
 - Step-5: When there is no new vertex to be visit then use back tracking and pop one vertex from the stack.
 - Step-6: Repeat Step 3, 4 and 5 until stack becomes Empty.
 - step-7: When stack becomes Empty, then produce final spanning tree by removing unused edges from the graph.

3. Analyze input (371, 323, 173, 199, 344, 679, 989) and bash function h(x) = x mod 10. Show the result in Seperate Chaining.

Ans: Given,

```
mput (371, 323, 173, 199, 344, 679, 989)
```

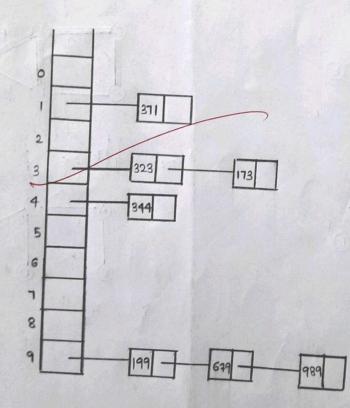
```
bash function b(x)=x med 10.
```

Now,

```
h(371) = 371 \mod 10 = 1

h(323) = 323 \mod 10 = 3

h(173) = 173 \mod 10 = 3


h(199) = 199 \mod 10 = 9

h(344) = 344 \mod 10 = 4

h(679) = 679 \mod 10 = 9

h(989) = 989 \mod 10 = 9
```

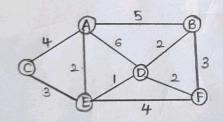
Representation using esperate Chaining:-

4. Define Minimum Spanning Tree? Explain Prim's Algorithm with Example. Ans: Minimum Spanning Tree: - The minimum spanning tree for a given graph is the spanning tree of minimum cost for the graph.

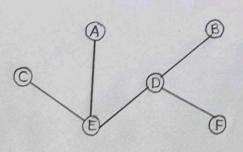
Prim's Algorithm:-

Prim's Algorithm finds the minimum cost spanning tree by selecting

the edges one by one as follows:


1. All vertices are marked as not visited.

2. Any vertex v you like is chosen as starting vertex and is marked as


visited. 3. The smallest-weighted edge e=(u,v) which connects one vertex v inside the cluster C with another verter u outside of C, is chosen and is added to the MST.

4. The process is repeated until a spanning tree is formed.

Example:-

Minimum Spanning Tree:-

2
2
7
2
3
3
4
4
5
6

5. Analyze input (371, 323, 173, 199, 344, 679, 989) and bash function h(x)=x mod 10.

Ans:- Given,

input (371, 323, 173, 199, 344, 679, 989)

bash function b(x)=x mod 10.

→ h(371)=371 mod 10=1 → h(323)=323 mod 10=3 > h(173)=173 mod 10=3 > b(173) = (173+12) mod 10 = (174) mod 10 = (4) 6(73)= (173+ 22) mod 10 = (177) mod 10 = 7 → h(199) = 199 mod 10 = 9 > h(344) = 344 mod 10 = 4 > h(679) = 679 mod 10 = 9 $b(679) = (679 + 1^2) \mod 10$ = (680) mod 10 = 0 → h(989) = (989) mod 10 = 9 $h(989) = (989 + 1^2) \mod 10$ = (990) mod 10 = 0 h(989) = (989+22) mod 10 = (993) mod 10 = 3 h(989) = (989+32) mod 10 = (998) mod 10 = 8

Representation using quadratic probing.

Unit wise Question Bank

No.

Unit Wise Questions

Question	Blooms Level
UNIT-1	
Short Answer Questions	
1. Define data structure.	1
2. List linear and nonlinear data structures.	1
3. List the operations performed in the Linear Data Structure.	1
4. Define abstract data type (ADT).	1
5. Define string.	1
6. List various string handling functions.	1
7. Define strcmp ().	1
8. Write a C-Program to check whether the given string is palindrome or not by using string handling functions.	3
9. Define Stack.	1
10. Define the term top?	1
11. Explain the over flow condition on stack?	2
12. Explain the term Underflow on stack?	2
13. List the applications of stack.	1
14. What is recursion?	1
15. Define prefix and postfix.	1
16. State the rules to be followed during infix to postfix conversions.	1
17. Convert the infix expression (a+b)-(c*d) into post fix form.	2
18. List how Stacks are represented in data structure.	1
19. Discuss which data structure used in recursion.	2
20. Explain the difference between stack implementation using array and linked list.	2
21. Write the necessity of infix to post fix conversion.	1
Long Answer Questions	
1. Explain the various string handling functions with example.	3

Department of Information Technology

2. Define a pointer. Write a C-program to reverse a string by using pointers.	
3. Write an algorithm for basic operations on Stack.	3
Explain the procedure to evaluate postfix expression.	2
Evaluate the following postfix expression: 6 2 3 + - 3 8 2 / + * 2 3 +.	5
Explain the procedure to convert infix expression into postfix Expression.	3
Convert the following expression $A+(B*C)-((D*E+F)/G)$ into post fix form.	2
3. Convert the expression $((A + B) * C - (D - E) * (F + G))$ into post fix form.	2
). Transform the following expression to postfix expression using stacks. $(a+b)^*((d-e)+f)$.	2
0. Convert infix expression into its equivalent post fix expression A*(B+D)/E-F*(G+H/K).	2
1. Transform the following expression to postfix expression using stacks. $(A+B)^*(C/(D-E)+F)$ - G.	2
2. Write C programs to implement stack ADT using Arrays	3
3. Write C programs to implement stack ADT using Linked list.	3
UNIT-2	
Short Answer Questions	
1. Define Tree.	1
2. What are the properties of tree?	1
B. List the applications of Trees	1
Define the terms node, degree, siblings, depth/height, level.	1
5. Define the term descendent of a tree.	1
5. Define path in a tree.	1
7. Define an empty tree.	1
3. Define Binary Tree	1
2. Explain the properties of a binary tree.	2
0. What is the difference between a tree and a binary tree.	1
1. Define full binary tree	1
2. Define complete binary tree	1
3. Define balanced binary tree,	- 1
4. Define a right-skewed binary tree and Left-skewed binary tree.	

5. State the properties of a Binary Tree.	11
6. Discuss how to represent Binary Tree	2
7. Define threaded binary tree.	1
8. Explain the rules to construct threaded binary tree.	2
9. What are the advantages and disadvantages of sequential (or) static (or) array epresentation on a binary tree?	3
20. What are the advantages and disadvantages of linked representation a binary tree.	3
1. Define an Expression tree.	1
2. Draw an expression tree for the following expression A*(B+D)/E-F*(G+H/K).	3
23. List the different traversing techniques of a binary tree.	1
Long Answer Questions	
. Explain Binary tree ADT.	2
2. Discuss representation of binary tree.	2
Explain tree traversals with example.	2
Define and explain the following.	2
. Complete binary tree.	
. Full binary tree.	
Expression tree.	
5. Define threaded binary tree? Explain the impact of such a representation on the tree raversal procedure?	3
5. Define an expression tree for the following expression $((A + B) * C - (D - E) * (F + G))$ and write the different tree traversals for above expression.	3
7. Write in order. preorder. post order traversal of the following tree.	3
S D O	

1

8. Given In order traversal of a binary tree is D,G,B,E,A,H,F,I,C and pre order traversal is A,B,D,G,E,C,F,H,I construct binary tree.

UNIT-3

Department of Information Technology

1. Define balanced search tree	
2. Define binary search tree with example.	1
3. State the operations on binary search tree.	1
4. What are the drawbacks of a binary search tree?	2
5. What is the difference between a binary tree and a binary search tree?	2
6. Define balance factor and what the balance factor value of avl tree is.	1
7. Define AVL tree with example.	1
8. List the different AVL tree rotations to insert a node.	1
9. Explain the L-R rotation of an AVL tree with example.	2
10. Explain R-0 rotation of an AVL Tree with example.	2
11. Compare AVL Tree and a binary search tree.	3
12. Discuss the drawbacks of AVL trees.	2
13. Define B-tree with example.	1
14. Discuss the different operations on B-Trees.	1
15. List the properties of B-Trees.	1
16. What are the advantages of B-trees?	1
17. Define B+ tree.	1
18. Explain the procedure to insert a node into B-Tree.	2
19. Compare B-tree and B+ tree.	3
20. State the properties of red black tree.	1
21. Define M-way tree.	1
Long Answer Questions	
1. Describe the insertion, deletion, searching operations on binary search trees.	2
2. Explain the insertion operation on AVL trees.	2
3. State the properties of Red-Black trees with example.	2
4. Explain the searching and deletion operation on AVL Tress.	2
5. Define binary search tree. Construct the binary search Tree for the below given data. P, F, B, H, G, S, R, Y, T, W, Z.	3
6. Explain various rotations of AVL Trees maintaining balance factor while insertion takes	2

7. Write a C program that uses functions to perform the following:	3
a) Create a binary search tree of integers.	
b) Traverse the above Binary search tree recursively in in-order.	
8. Insert the following elements into an empty AVL Tree20, 15, 5, 10, 12, 17, 25, 19.	3
9. Explain the various rotations of AVL Trees maintaining balance factor while deletion takes place.	2
10. Construct AVL Tree with the following elements C,O,M,P,U,T,I,N,G and remove the elements P, U and T.	3
11. Explain the following with example.	2
a. Red-black trees.	
b. M-Way trees.	
c. B-Trees.	
d. B+ trees.	
12. Define B-tree, B+ tree? What are the advantages and disadvantages of B-tree? Explain with an example.	3
<u>UNIT-4</u>	
Short Answer Questions	
1. Define graph.	1
2. Discuss the representation of graph with example.	2
3. Explain the Adjacency matrix representation of graph.	2
4. Explain path matrix representation of graph.	2
5. Explain the linked representation of the graph	2
6. List the different graph traversals.	1
7. Differentiate BFS and DFS.	2
8. Define Spanning tree.	1
9. Define minimum Spanning tree.	1
10. Explain the basic properties of a spanning tree.	2
11. Define weighted graph.	1
12. Define sub graph.	1

Department of Information Technology

1100

14. Define di-graph.	1
15. Define in degree, out degree for a graph.	1
16. Define path in a graph.	1
17. Explain the advantage of DIJKSTRA algorithm.	2
18. List the applications of Graphs.	1
19. Differentiate tree and a graph.	2
20. What is the difference between BFS and DIJKSTRA algorithm?	4
Long Answer questions.	
1. Explain graph ADT.	2
2. Explain different ways representation of graphs.	2
3. Explain BFS graphs traversal algorithms with suitable example.	2
4. Explain DFS graphs traversal algorithms with suitable example.	2
5. Differentiate BFS and DFS.	3
6. Define Graph and explain how graphs can be represented in adjacency matrix and adjacency LIST.	1
7. Write the advantages of using BFS over DFS or using DFS over BFS? What are the applications and downsides of each?	1
8. illustrate BFS and DFS traversals of following graph	3
9. Illustrate DFS and BFS traversals of following graph	3
10. Define Minimum Spanning tree? Explain Kruskal's Algorithm with example.	3

Department of Information Technology

11. Define Minimum Spanning tree? Explain Prims Algorithm with example.	3
12. Explain DIJKSTRA Algorithm with example.	3
13. Explain DIJKSTRA Algorithm for the following graph.	3
<u>UNIT-5</u>	
Short Answer Questions	
1. Differentiate linear search and binary search.	2
2. Define Hashing.	1
3. Compare the time complexities of binary search, linear search, hashing.	3
4. Define hash table.	1
5. Define Hash Function.	. 1
6. List different types of popular hash functions.	1
7. Explain mid square method with example.	2
8. Define Collision.	1
9. Define probe.	1
10. State different types of collision resolving techniques.	1
11. Define Separate Chaining	1
12. Define Open Addressing	1
13. Define Linear probing	1
14. Define Quadratic Probing	1
15. Define Double Hashing	1
16. Define rehashing	1

Department o	f Information	Technology
--------------	---------------	------------

18. List the uses of hash table	1
19. Define dictionaries.	1
20. What are the uses of dictionaries?	
Long answer questions	
1. Define hashing and discuss the different hashing functions with an example.	2
2. Define collision and discuss any two collision resolution techniques	2
3. Explain Chaining with an example	2
4. Explain the implementation of dictionaries using hashing.	2
5. Use quadratic probing to fill the Hash table of size 11. Data elements are 23,0,52,61,78,33,100,8,90,10,14.	3
6. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function h(x)=x mod 10, Show the result Separate Chaining, linear probing.	4
7. Analyze input (371, 323, 173, 199, 344, 679, 989) and hash function $h(x)=x \mod 10$, Show the result using quadratic probing, and double hashing $h2(x)=7 - (x \mod 7)$	4

Mid Question Papers

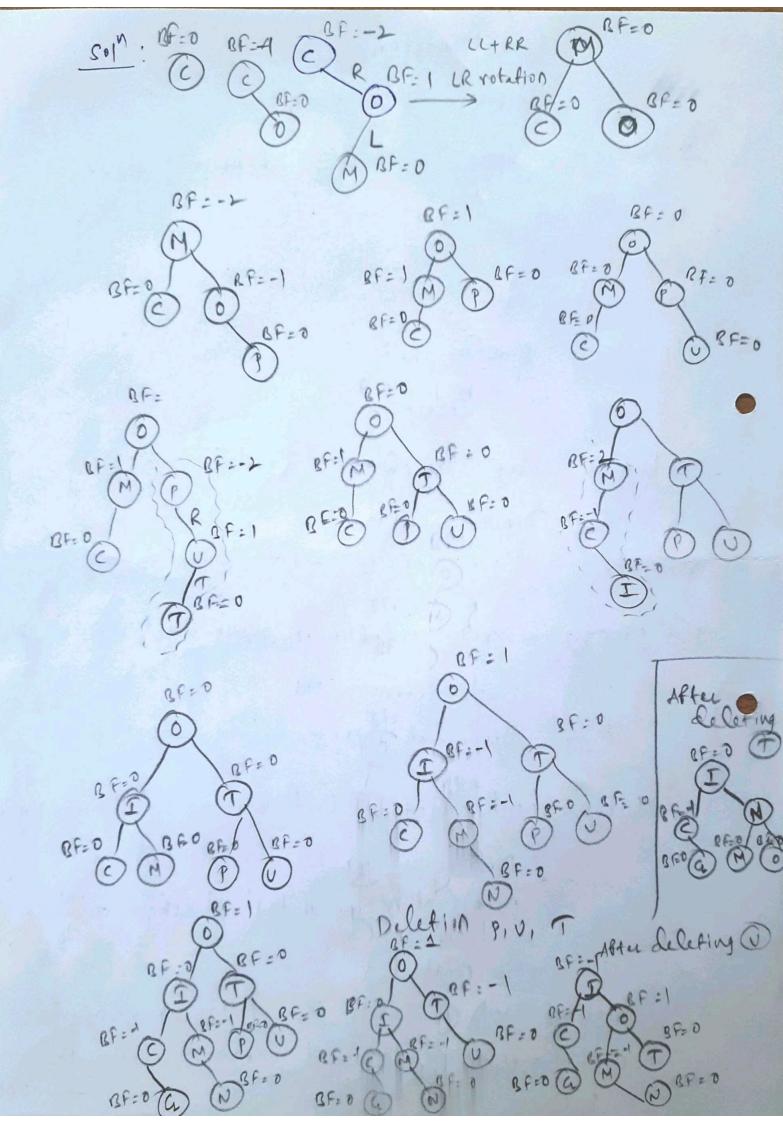
Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad) (Aziz Nagar, C.B.Post, Hyderabad -500075)

II Year B. Tech I Semester Mid-II Examination, February -2022

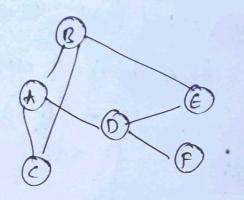
Subject: Data Structures Time: 90 Minutes

Branch: IT Max. Marks: 20

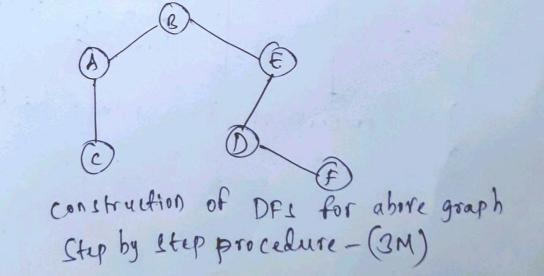

Bloom's Level:

Remember	L1	Apply	L3	Evaluate	L5	7
Understand	L2	Analyze	L4	Create	L6	1

Q.No.	PART-A	BL	СО	PO	Marks
ANSW	ER ALL THE QUESTIONS $(3Q \times 2M = 6M)$	1.136		Sec. 1	1
1	Define binary search tree with example.	2	3	1,2	2M
2	Discuss the representation of graph with example.	3	4	1,2,3,9	2M
3	Define Hash Function. List various hash functions.	2	5	1,2,9	2M
	PART-B				The second
	ER ALL THE QUESTIONS (5+5+4=14M)	a base			- 10 AV
4. i	Construct AVL Tree with the following elements C,O,M,P,U,T,I,N,G and remove the elements P, U and T.	6	3	1,2,4,9	
	(OR)				5M
ii	Describe the insertion, deletion, searching operations on binary search trees.	4	3	1,2,4,9	
5.i				5M	
	(OR) Define Minimum Spanning tree? Explain Kruskal's				
ii a)	Algorithm with example.	4	4	1,2,3,4,9	2M
b)	Explain DIJKSTRA Algorithm with example.	4 .	4	1,2,3,4,9	3M
6. i	Analyze input $(371, 323, 173, 199, 344, 679, 989)$ and hash function $h(x)=x \mod 10$, Show the result using Separate Chaining.	4	5	1,2,4,9	
	(OR)				4M
11	Analyze input $(371, 323, 173, 199, 344, 679, 989)$ and hash function $h(x)=x \mod 10$, Show the result using linear probing.	4	5	1,2,4,9	


VJIT(A)

Data Structures Scheme OF Evaluation I Brech I Semester Mid-I February 2022 Branch: IT Subject: DS Max Marks: 20M Instructor: K. Shireesha Part-A I Define binary Seachinewith Frample. 2M. Definition - 1 M Diagram of BST-IM 2. Discuss the representation of graph with Grample. 2M Graph diagram - IM Different representations - IM 3. Define hash function. List various hash functions Definition - IM Different types of hash functions-IN. Part-B Construct AVL Tree with the following elements Ai) CID, M, P, U, TII, N, Ce and remove elements SM P, U, T



(ii) Describe the insertion, deletion, searching Operations on binaly search trees.

(i) DFS Graph Traversal algorithms & illustrate DFS traversals of following graph. - (SM)

writing DFS algorithm - (2M)

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By A.I.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad) (Aziz Nagar, C.B.Post, Hyderabad -500075)

II B.Tech I Semester Mid-I Examination, November-2021

Subject: Data Structures Time: 90 Minutes

Branch: IT Max Marks:20

Bloom's Level:

Remember	LI
Understand	L2
Apply	L3
Analyze	L4
Evaluate	L5
Create	L6

Q.No.	PART-A	BL	СО	PO	Marks
ANSWE	R ALL THE QUESTIONS	(2	Q x 31	M = 6M)	
1	Why queue is called FIFO list and stack is called LIFO list.	1	1	1,2,3, 4, 5, 11,12	3M
2	Define a binary tree. List the types of binary trees	1	2	1,2,3, 4, 5, 11,12	3M
	PART-B				
ANSWE	R ALL THE QUESTIONS	(.	2Q x 7	M=14M)
3. i a)	Discuss the algorithms for push and pop operations on a stack.	6	1	1,2,3, 4, 5, 11,12	3M
b)	Write a program for converting infix expression to postfix expression and explain with an example.	3	1	1,2,3, 4, 5, 11,12	4M
	(OR)				
ii. a)	Define data structure. Explain different types of data structures	3	1	1,2,3, 4, 5, 11,12	3M
b)	Write a program to implement Queue ADT	3	1	1,2,3, 4, 5, 11,12	4M
4 i. a) ·	Explain binary tree ADT.	5	2	1,2,3, 4, 5, 11,12	3M
b)	Discuss representation of binary tree using arrays and linked list.	6	2	1,2,3, 4, 5, 11,12	4M
	(OR)				

ii .a)	What is a threaded binary tree? Explain with an example	4	2	1,2,3, 4, 5, 11,12	3M
b)	Write in order, preorder, post order traversal of the following tree.	4	2	1,2,3, 4, 5, 11,12	4M
	VJIT(A)				

End Exam Papers

Vidya Jyothi Institute of Technology (Autonomous) (Accredited by NAAC & NBA, Approved By A.L.C.T.E., New Delhi, Permanently Affiliated to JNTU, Hyderabad) (Aziz Nagar, C.B.Post, Hyderabad -500075)

Subject Code:A43503

B.Tech. II Year I Semester Regular Examination, February - 2022

Subject: Data Structures **Time: 3 Hours**

Branch: CSE, IT & CSE(DS) Max. Marks:75

R20

Bloom's Level:					
Remember	LI				
Understand	L2				
Apply	L3				
Analyze	L4				
Evaluate	LS				
Create	L6				

1	WER ALL THE QUESTIONS 25 Marks	a subscription of the second se			
	What is the value of the postfix expression $236 * 2/+$	1	1-12	Level L1	2M
2	If the elements "A", "B", "C" and "D" are placed in a stack and are deleted one at a time, what is the order of removal?	1	1-12	L1 L2	3M
3	What is a full binary tree? Give one example.	2	1-12	L1	2M
4	Write the Properties of binary trees.	2	1-12	L3	3M
5	What is a complete binary tree? Give example.	3	1-12	L3	2M
6	What is AVL tree?	3	1-12	L2	′3M
7	List and define the tree Traversals.	4	1-12	L2	2M
8	Write about Dijkstra Algorithm.	4	1-12	L3	3M
9	Give the collision resolution techniques.	5	1-12	L6	2M
10	If a hash table of size 11, where is element 7 is placaed. Use the hash function h(key)= key mod tablesize	5	1-12	L2	3M
-	PART - B	(conth)	The sea	······································	1000
ANS	SWER ALL THE QUESTIONS 5Q X 10M = 50 M	Dec 2	St winter	and in the set	1000
11.i	Pictorially illustrate a Circular Queue having size=5 with initial index of front =rear=-1. a) Cir_enqueue (33), b) Cir_enqueue (24), c) Cir_enqueue (15), d) Cir_dequeue (), e) Cir_enqueue (42), f) Cir_dequeue (), g) Cir_enqueue (78), h)Cir_dequeue (), i) .Cir_enqueue (87), j) Cir_enqueue (51), k) Cir_enqueue (6), l) Cir_dequeue () at every step highlight the index of front and rear.	1	1-12	L2	10M
	[OR]		1		Service Services
ji.	Convert the given Infix to post fix expression: $((A - (8 + B))*4)^{(C+D)}$	1	1-12	L6	10M
¥2.i	Traverse the following binary tree in pre, post, and inorder.	1	1-12	L3	10M
1. A. A.	[OR]				
	Explain Binary tree representations with an example.	2	1-12	L6	5M
b)	Construct a binary tree from a given preorder and inorder sequence: Preorder: A B D G C E H I F Inorder: D G B A H E I C F	2	1-12	L3	5M

	and the second and the second of the second second and	со	PO	Bloom's Level	Marks
13.i	Construct a B- tree of order m=3 as maximum height using the sequence of nodes: 50,11,65,26,62,10,55,22,70,35,80,15,85,40	3	1-12	L6	10M
	[OR]				
A.	Write the properties of Red-Black Trees.Give one example.	3	1-12	L2	10M
	Create a spanning tree, using BFS traversal of given graph.		1-12	LL	10141
14.i.		4	1-12	L6	10M
- Strengt	[OR]				
	Find the minimum cost of the following Minimum Spanning Tree using Prim's algorithm.	- <u></u> 1	1.11 F.		
ï	A A B B C A B B C B B C B C B C B C B C	4	1-12	L4	10
15.i	Consider a hash table of size 10. Using quadratic probing, insert the keys 72, 27, 36, 24, 63, 81, and 101 into the table. Use $h(k) = (K+K+K) \mod m$.	5	1-12	L1	1014
	$(\mathbf{X}^{\top}\mathbf{X}^{\top}\mathbf{K}) \mod \mathbf{M}$	5	1-12	LI	10M
	[OR]	· With s	and a second	2.2.5	
-11.	Insert the following elements into hash table initially empty of size 10 45, 70, 76, 85, 89, 69 and 125. Use linear probing, quadratic probing, double hashing(R=7) and separate chaining technique for collision resolution.	5	1-12	L6	10M

Vidya Jyothi Institute of Technology (Autonomous) (Accredited by NAAC & NBA, Approved By ALC.T.E., New Delhi, Permananthy Affiliated to JNTU, Hyderabad) (Aziz Nagar, C.B.Post, Hyderabad -500075)

Subject Code: A23504

B.Tech. II Year I Semester Examination NOVEMBER -2019

SUBJECT: DATA STRUCTURES

BRANCH : CSE&IT Max. Marks:75

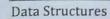
Time: 3 Hours

Note: This question paper contains two Parts A and B.

Part A is compulsory which carries 25 Marks. Answer all question in Part A.

Part B consists of 5 questions. Answer all the questions.

oom's I	Level:								
emembe		LI	Analyze	and the second se	L4				
nderstar		L2	Evaluate	and the second second	L5			Service and the service of	
pply		L3	Create		L6		Bloom's		
FF V			PA	RT - A				25 Marks	
ANTON	VED AL	THE	OUESTIONS			200 B	Level	2M	
ANSWER ALL THE QUESTIONS 1 What is Data Structure? Explain its types.								and the second se	
1	What is Da	ta Structu	ire? Explain its typ	pcs.			L4	3M	
			nd queues.				L1	2M	
3	Define full	binary tr	ee.		ala		L1	3M	
4	Define path	n,sibling,l	height of tree with	an exam	pie		L4	2M	
5	Explain the	e necessit	y of height balanci	ing in tree	es.	and the second se	L4	3M	
6	Explain sir	igle rotati	ions in insertion of	TAVLI	ee.		L4	2M	
7	List any tw	o differe	nces between grap	ohs and th	ees.		L5	3M	
8	Briefly exp	plain DFS	Graph Traversal.	I d' Des	hing	1	L2	2M	
9	Differentia	ate Linear	Probing and Quad	dratic Pro	obing.		L5	3M	
10	Explain D	ictionarie	s with an example				Bloom's		
-			PA	ART - B			Level	50Mark	
ANST	VER AL	L THE	QUESTIONS			and the second		6M	
ALLO	Convert	a infive	voression a / h - c	+d*e-	a*cin	to postfix expression and trace	L6	OM	
11.1.a)	Convertu		sion for given data	a=6 b=3	c=1.d=	2.e=4.		Line in the	
							L6	4M	
b)	Discuss a	n algorith	nm to insert an eler	ment in a	queue.	and the second	1 10	1 1112	
0/						DR]	L2	6M	
ii.a)	Explain a	dvantage	s of circular queue	e over line	ear queu	e and explain its operations.	L2 L6	4M	
b)	Convert t	he follow	ving expression int	to potfix r	notaion.		LO	TITA	
0)	A +	B*C+	D-E+F			A Company of the second second	1	-	
10:0		· · · · · · · · · · · · · · · · · · ·	tial approximation	n of a bin	ary tree.		L2	5M	
12.1.a) Explain I	ite seque	inary tree Explain	n tree tra	versal p	rocedure of extended binary tree.	Ll	5M	
6)	Denne en	klended o	mary nee. Explain		1	OR]			
		-	1 Comeda	an hinany			L1	5M	
ii.a)	What op	erations c	an be performed o	on oniary	nlain w	ith example	L4	5M	
b)	Explain	in-order t	raversal of a binar	y lice. LA	and bal	ance factor after every insertion	L3	6M	
13.i.a	for the fe	ollowing	elements 14, 17, 1	1, 7, 53,	4, 13, 12	ance factor after every insertion 2, 8 and remove the elements 53,			
	11 and 8				10		L4	4M	
b) Explain I	Red-Black	trees with appropria	ate examp	10.	OR]			
		1.58	in i to the ine	artion of	anode	in the Binary Search Tree	L3	5M	
ii.a)) Write a	program 1	to illustrate the ins	sertion of	anouc	in the Binary Search Tree	L4	5M	
b)	Explain	B-tree wi	ith example.	·	aha		LI	5M	
14.i.	a) What is	graph? E	xplain the properti	ies of gra	pns.	ain with an example	L3	5M	
t) Write B	readth Fin	rst search traversa	al algorith	m. Exp	lain with an example.			
			a la contra de la	1. 19	in mark	[OR]	L3	5M	
ii.a) Write Ki	uskals Al	gorithm.			a di la di	13	5M	
h	Write Di	ikstra Alg	orithm.				LI	5M	
15.i.	a) What is	hashing? H	Explain Double Has	shing and I	Rehashin	g.	LI L4	5M	
	b) Explain	Separate (Chaining and Open A	Addressin	g.	All and a second se	1 14	5141	
						[OR]	1 12	5M	
	Writes	hort notes	s on hashing functi	tions			1,3	and the second sec	
ii.a	1) 11110 5	none more.	tensible hashing.	nons.		A local de la construcción de la	L4	5M	


R18

VJIT(A)

Content Beyond Syllabus

Content beyond Syllabus

S. No	Name of the Topic
1	Priority Queues and Sorting Techniques
2	Pattern Matching Algorithms
3	Time Complexities of various Algorithms

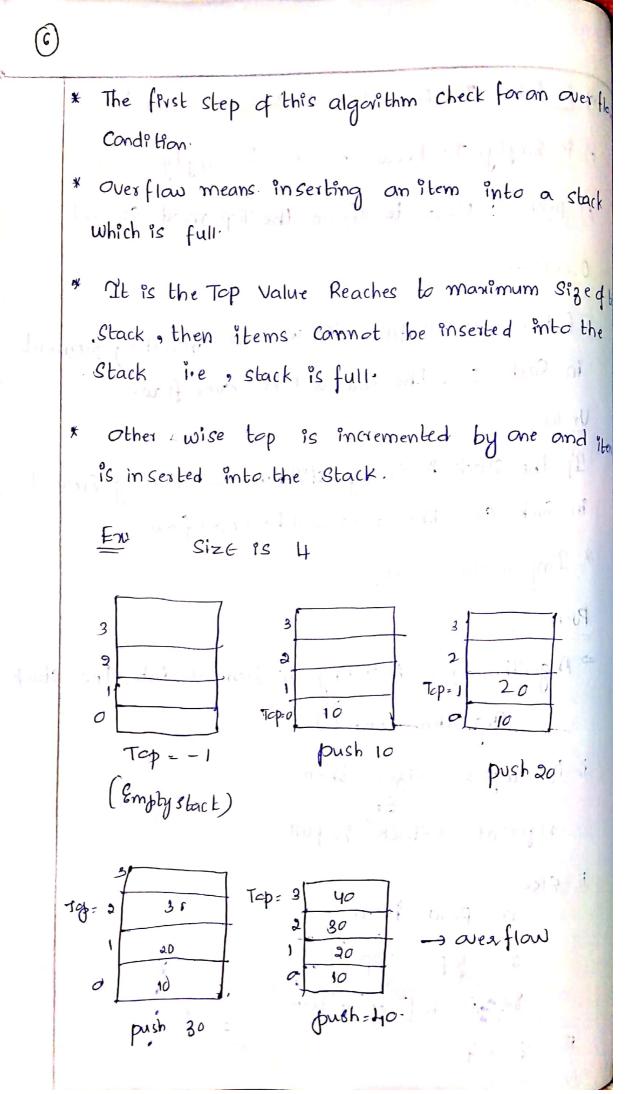
10

Unit Wise PPTs and Lecture Notes

19 June 2019, Data Structures Defination? It is a Logical way of storing the data and it derives how the data can be retrived. Data type: Data type is a way to classify the type of the data. These are 2 types of data types. & Built in datatypes / primary / primitive. " Derived data types I Built in data types: Built in data types are already defined by the Programming Language (or) for which a Longuage has built in support. §q: In č → int, float, char " Derived data types: These are built in data types having associated operation. Eg, Array, Structure, Union, Stack, Queue. Derived data types are also called as abstract data bypes (ADT) Abstract data type (ADT): It is a derived data type defined by built - in data type with associated operations.

Egt int a[10] Insert and to a delete display mich about the sol . Sort Search Abstract data type is also known as Data Structure we have two types of data Structures. i Linear il, Non-Lineag 101 - - 1 l'Linear: In Linear data Structures, the arrangement of the data is in Linear format i.e., the storing of the data will be done one after the another Eq: Array, stack, queue, corcular Queue Stc, List i Non-Linear: The arrangement of the data Elements is in random fashion. Sq. Tress, graphs, Heap Etc. Based on storage: i Static Data Structures: Static Data structure is given a fined area of memory. 1. 111 It is not possible to Expand the size at suntime, So that Location of Each Element is fixed. We represent the Elements with array.

Advantages: " Faster accessing of the Elements. " The memory Locations are created at the time of declaration. Disaduantages:toning all no could have a 12 i Non effective use of resource i.e the memory is wasted when we are not using the allocated value il Size is not flexible. Il Dynamic Data Structures: A Starl In dynamic data structures, the size of the allocation area is flexible i.e. it is possible to Expand the allocation at run time. We represent these Elements with List. s is pour mound if not Advantages ! W. W. W. W. is Effective ævering usage of resources Palan II iliu 🔿 il, Fernible Size Disadvontages and traded at hereby the i slower access. dependence and stable

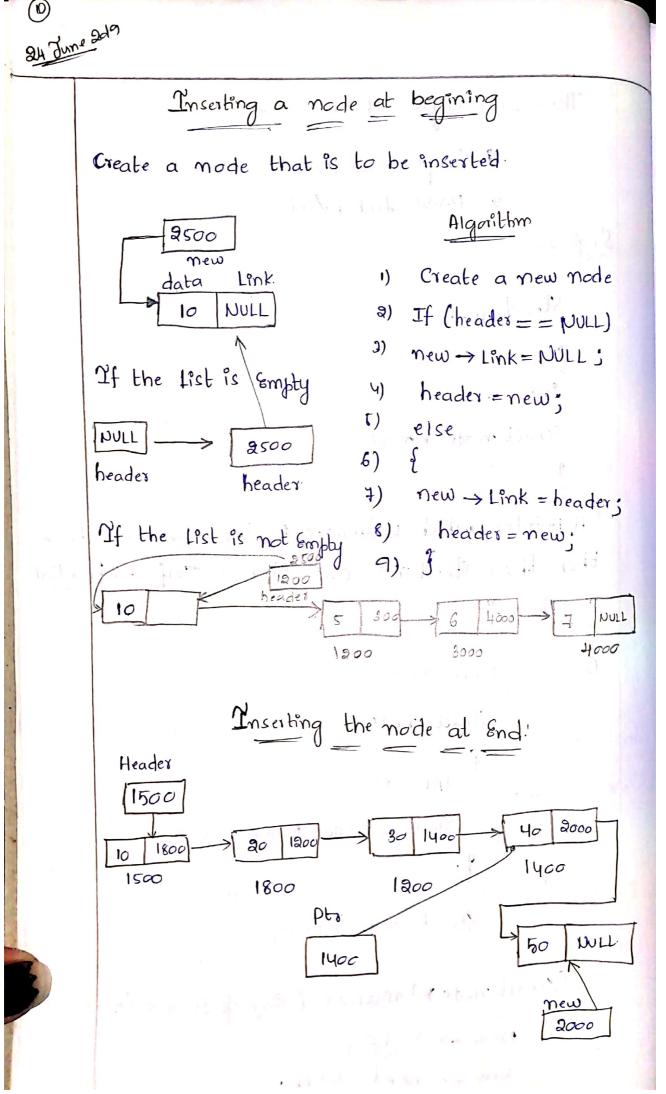

3

(4) ·21 June 2017. Linear data structure: () STACK! A stack is a Linear data structure where the insertion and deletion can be done at one End. Stack word based on the principle of LIFO * It is an abstract data type Examples O A stack of Cups (1) A stack of Catetoria trays A stack of Gins. Operations in stack; -> stack can be implemented in 2 ways. O with the help qarray (static Representation) (with the help of List (dynamic representable) Operation) push -> used to insert the data Element a) $pop \rightarrow delete$ the data Element. 3) Traverse -> moving from one point to another point

Scanned by CamScanner

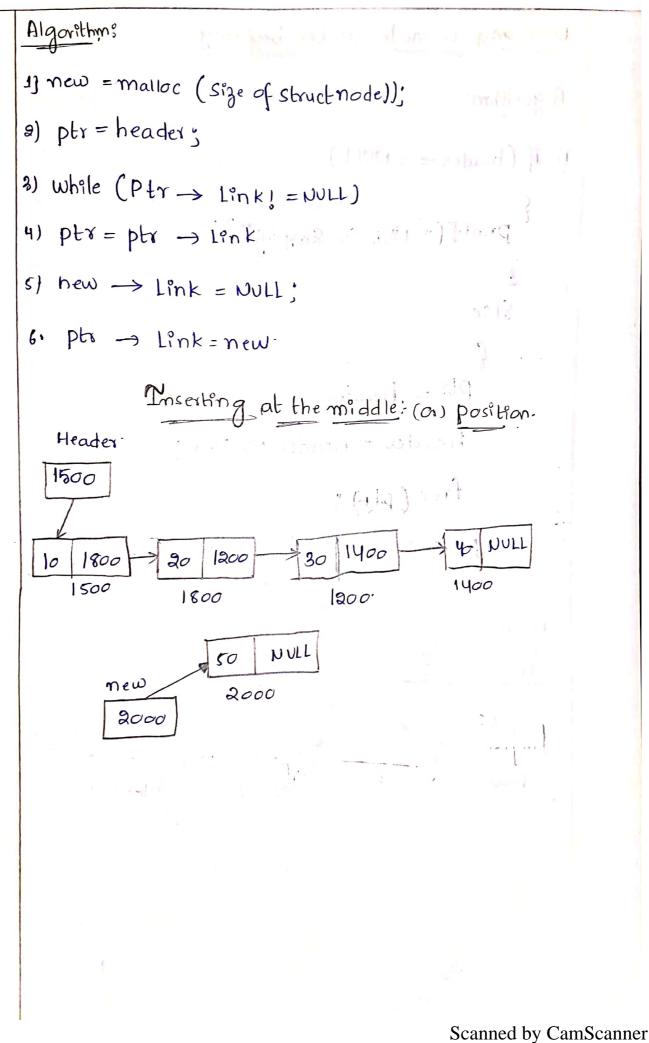
S, 4) is full; To know the stack is full or not 5) is Empty: To know " is Empty. 6) peck: : Used to return the Top most Slement. Over flaw: and show If the stack is full still we are inserting Element in Such case the data will be over flow. Under flavy If the stack is smpty still we are deleting Element in Such Case the data will be under flow. * Implementation of Stack. PUSH > ⇒ Algorithm for inserting an Element Into the stack. Algorithm push () i if top > = size then 1) print "stack" is full ii, Else 1> Read item 2) Top = Top +1 8) Stack {Top]= item , iii, End if Stop IV,

Scanned by CamScanner



(1 POP: (Delete) Algorithm for deleting Element from stack -> Algorithm pop () or the Too ") if top = - 1 then () pulse the milling if Print "Stack is Empty" a) Else S And? Into is item = Stack (Top) " top = Top - J ill, End if iv, Stop * The first step of this algorithm checks for Under flav Condition * If the top value is -1 then stack is known . J stalle in U. as underflaw (01) Empty. * Jake out the Element from the Location where the top is pointing and store it in the variable then decrement top by one. En.: Top=21 30 20 20 pop PGP POP

Scanned by CamScanner


8 Z pop Top= -1 Under flow, Display (Traversing) =) Algorithm d'isplay () 1) if Top=-1 print 'Stack Empty" an Sise for $(i = top; i > = \sigma; i = -)$ print Stack (1) 3) Endif 4) Stop 114 17 if the Top Value is -1 then the stack is Empty. If , stack is not Empty, assign top value to -Variable i, display the item which is pointed at Stack [i] and decrement the Lop Value by one and Repeat this until typ becomes zero. 22 June 2019 Implementation of stack Using Dynamic Represe? Linked List' Linked list is a Collection of modes and A node Consists of two parts. a 1) data a) address.

These are 2 types of Linked List. B Single Linked Lest 9) Dauble Linked List. Single II: Struct mode itis i si bil sil 12 Int a; Struct mode * ment; 3; A sal -> A pointer which References to the Some structure then those structures one called as self- Refrentia Stoucture ." Creation of new node Struct node ſ int a; Struct mode * nent; 3; a.Gl 0281 Struct node Xnew; (Struct node *) malloc (Size of Struct (node)) New -> a=10 New -> next= NULL:

M

Ph (,)

26/02/19
Deletiong a node at the beginning
Algorithm:
1) if (header == NULL)
i printf (" I'st is Smpty");
i i
Sise
i f
Ptr = header;
header = header -> I'snk;
free (ptr);
j
Header
Header

$$1800$$
 1200 300 1400 40 NULL
 1500 1800 1200 300 1400 40 NULL
 1500 1800 1200 1200 1000 1000 1000

Deleting the node from the End
Algorithm:
1)
$$Ptr = header;$$

2) (While ($ptr \rightarrow linkj = NULL$)
3) $2 ptr 1 = ptr 2$
4) $ptr = ptr 2 link;$
5) $ptr 1 \Rightarrow link = NUL;$
6) face (ptr);
heada
1500 100 100 100 100 100
 $ptr 1400$ 100
 $ptr 2 = ptr 2 = 1; i+1$
3) $ptr = ptr 2 = link;$
9) $ptr 2 = link = ptr 3 = link;$
9) $ptr 3 = ptr 3 = link;$
9) $ptr 3 = ptr 3 = link;$

(4) Y M to y O ph-1 Ptr Header 1500 1200 1800 40 NULL 20 1400 39. 1400 0 1800 1200 1400 1800 1500 Applications of stack: (2) NVU 문제에 중 문제적 1) Recursion (ng) and Eg : ちし 5* fact (H). if (n=eo 111) 1 return 1 4* fact (3). Else \checkmark return n* fact (n-1) 3* fact (2) J a* fact(1) 1 Ditting on the trade parts 1 Sand Strap A DELANS - Rid U ("+1:1 - " of stall as as SI PL- pti - 1Sik, Will and a lide 14 the state and a set of Judg och -

1

In Notation, An Arithemetic Expression can bewritten
im 3 different notations. These notations are.
1> Infix notation Left () - high 2> prefix notation right [/* 0/0 - medium] 3> Post fix notation + Law
2) prefin notation right] 1× 0/0-medium
3> Post fix notation
Infix notation;
In this notation operands are having operators
those are in between operands
En: a+b-c
a, b, c are operands
+ 9 - are operators
pre-fix Notation: (polish Natation)
In this Notation operator is prefix to operands
i.e Operator is written before operands
§g: atb ->tab
atb*c -> +a*bc becalle
It is also called as polish Notation.
$6 \neq 7 \rightarrow \neq 67$
$a+b/c \rightarrow +a/bc$
axb+c -> × ab+c
+× abc
Soonnad by ComSoonna

 $\rightarrow +ab - c$ atb-c - abc $atb \neq c - d \rightarrow at \neq (bc) - d$ taxbc-d - + a × bcd $\Rightarrow a/b \neq c-d$ $\rightarrow (A \neq B) + (c \neq d)$ - * / abcd + * AB * Cd \rightarrow ((a+b)) \times c) -d * tabed Post firmo tation: 125.00 If this notation this operator is post fixed i.e., the returned after the operands this is also known as Reverse polish notation En: atb -> atb * c abt - abc *+ Convert given Expression into post fix. 1) atb-C*d dinn - Did FD a+b - cd * ab +cd * a) alb-ctd ablc-+d ab /c -d+

a lives

Scanned by CamScanner

	Convert the given Expressions to postfix and pre-fix			
	Notation.			
	(unithemetic Enpressions can be Enpressed in three way)			
	((A+B)*(C-d))/e	1-07	ain (a) pards es	
	((AB + *(cdd))/d	e), /* + AB-cde	dru (Sub en	
		5 ×	Er: alb	
			String	
	Examples		× ndΣ	
	Infla Expression	Pre-fix Expression	post fin Expression	
	2+3	ta3	. 23+	
	2+3≠5	+ 2*35	235 × +	
41		*+ 835	The Prove on the	
	(2*3)-(5+9)		23 * 59 t-	
	Conversion of a given Infin Enpression to post fin			
	Expression.			
		$\chi = \chi^{2}$	-7F × 170	
			Section and the	

Rules: 1) The Expression will be read from Left to right. An Empty stact is taken to add operators. Ex: atb T=p=-1 P+ string ab Gab < * ((Lab))* Ex: a+b×c String abc * + 1 m: axb+c pf and *C+ If the Reading Symbol is operator then pushit Porto stack. Haw Ever first pop the operators whi already on the stack that have higher or Equal P" than the current operator Write an Expression a-b*c/d+e%f abe * d/ - efo/o +

If the Reading Symbol is open or Left poronthesis then push into Stack. If the Reading Symbol is Right of closed paranthesis then pop all the contents of stack until Respective Left porronthesis is poped. And add all the poped Element to post fix -String (a+b-c) × d (a+b) * c. ab+C-d* +--ab× c Conver the using given Engression Into Bostfin using Stack. (DV 2) ((P) $((a+b)) \times d)/e$ * (* 412) × (* 412) ab+c-d*e/ (611 8) X 7- (2*3+5)* (8-4/2) (w - 3) 6-4165 (61 H -2 Corner & BA

-

Scanned by CamScanner

(30)		
ALCO	Remaining Infix Stack	Postfixs
	7 - (2 + 3 + 5) + (8 - 4/2) Emply	null
7.188	-(2×3+5)*(8-4/2) Emply	7
	(2+3+5)×(8-4/2) -	10 at 17-1
	$2 \times 3 + 5) \times (8 - 4/2) - ($	1 4 (17)
	*3+5) * (8-4/2) - (72
	3+5) * (8-412) - (*	7ล
	+5) + (8-4/2) - (+	723
	5) * (8-4/a) - (+	723×
) + (8-412) - (+	F2375
	* (8-4/2) -	723 *54
	(8-412) -*	723 * 5 +
	8-412) -*(723 75+
	-41a) -*(723*5+8
	4/a) - *(-	723 7 5+8
	12) -*(-	723 × 5+84
-	 𝔅) - × (−/) - × (− / 	$723 \times 5 + 84$ $723 \times 5 + 842$
-		

(a)
null Empty 7832 57842/-2-

$$g_{1102113}$$

Conversion of J'n fix to pre-fix Using stack:
1) Reverse the given Infix Expression
 $f_{1}^{(A+B) \times C}$
 $C \times B + A$
while Reversing Each (° becomes ')' and ')' becomes
'(°
a) Obtain the post fix Expression of the Modify Infix
Expression
a) Reverse the postfix Expression.
 $f_{1}^{(A+B) \times C}$
 $C \times (B+A)$
 P_{2} ($A+B$) $\times C$
 $C \times (B+A)$
 P_{2} ($A+B$) $\times C$
 $C \times (B+A)$
 $C \times (B+A)$
 $C = C \times (B+A)$

-

Ð Convert the given Expression * (((A+B)*c-d)/e)*f. $((+AB \times c-d/e) \times f)$ (+ + ABC - dle) + f× bat X / X HABC · Cdef (2 f × (e/(d-c × (B+A))) 1 fed CBA+*-/* •) Pry */- * + ABcdef. 107/19 Evaluation of post fix Expression to result. in right Il it add a raw a+b*c a+bc* C b G : Salarair: byc abc *+ NIL SIX b*c ARTIN atble c. ++ +3) NAX AL 17 D x(a)A (A 1 8) . SB FX IN 1

23 Evaluation of Algorithm to Reverse polish Notation. 1) Initialize Smpty stack 2) Convert the given Infix Expression into R.P.N 3) If a token is an operand push it on the stack. 4) If a token is an operator prop apply the following Steps >> pop the Top two Values from the Stack . apply Operator Token in between Top two values in such a way that Top value becomes operand 2 and Top-1 Value becomes operand 1. -> push the Result on to the Stack 8) Repeat Step 3 and 4 until the End of Expression Ste 6) The Value of the Expression on the Top of the stack. print the Result as Top Value. En: Evaluate the postfix Expression 596,2,+, ×, 12,4. 1,-6+2. Any 2 + 6 8 75. 10-3 - 37'

Evaluate the following Emp 7- (2×3+5)× (8-4/2) $\mp -(2 \times 3 + 5) \times (8 - 4/a)$ ₩ (28 (723 ×5+)* (842/-) 9 723*5+842 /-*-4 5,3 an apart Made deal some de 8 ¥ 11 =)-59 6 Live Values from the St. Evaluation of prefix Expression! A+B* C 5 A= 3 B= Y + A×BC C= 5 +3×45 =23 pEonvert the given Infin Expression into prefin Expression. 2) start Scaning the String from right to heft. 1 character at a time. 3) If it is an operand push it onto Stack. 4) It it is an operator. pop Top two operates from Stack in such a way that top value becomes operand 1 and Top-I value becomes operand 1 s) perform the operation and push the result into the sta Scanned by CamScanner

O Repeat @ & O up to the End of the string. Display The result is stored in the Top and il is displayed. EI convert the given Expression into pre-fix. atb-c ¥d/e d=4. a=1 b-2 e= 5. 3-} x 12 6=3 a+b-/* cde - + ab/x cde. - +12/ × 345 0dd 1the state of the s al former angert all produced (A Jan Barris

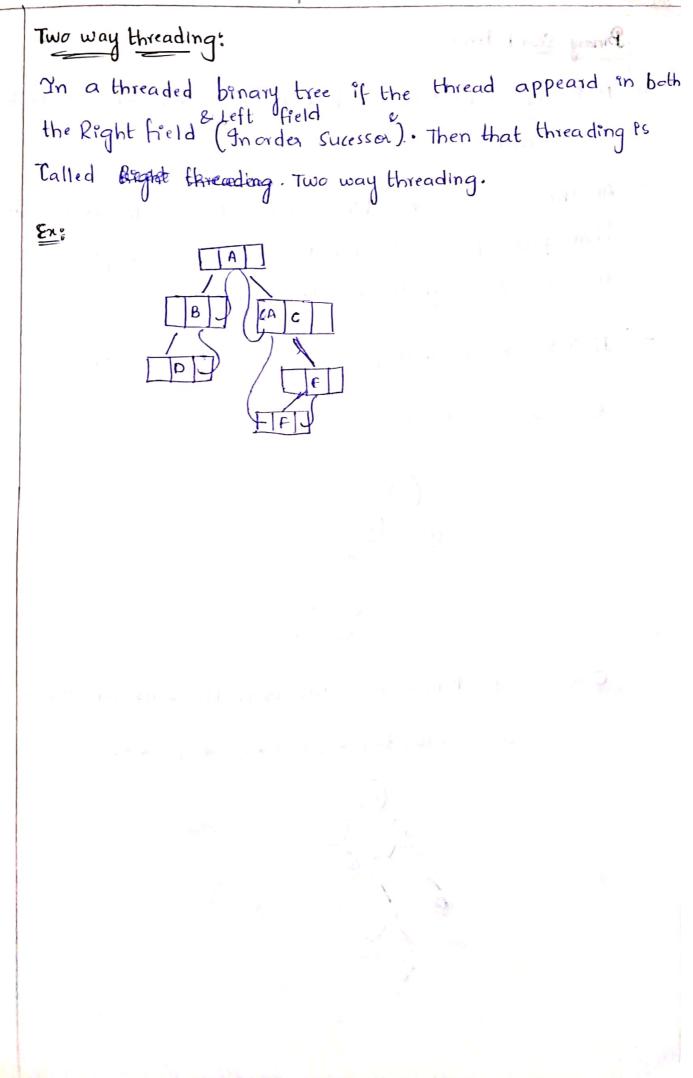
gueue:

Queue is an abstract data type where the insertion and deletion can be done from different Ends. The Insertion End is called Ray and Deletton End is Called Front. Queue follows the principle of first in first out (FIFG

Basic gueue Operations:

Insertion: To add a new item to the rear End the gueue The rear and always points to the Recently added Element. Deletion:

To delete the item from front Enda Queue The front always points to the Recently removed Element.


Display: To display items of Queue.

Enample

)Printing the papers.

Algorithm:

Ŧ	x!
	B
C	Dummy Nodes During La Constant with Constant
N	Dummy Nodes Represents Square bones with consists of JULL data.
	Threaded binary Pree:
-	In a linked Representation of a Binary tree a number of
	Nodes Contain a NULL pointer Either in their left or Right field or in both. This page is wasted in Storing a Null Pointer Can be used to store Some other information:
-)	The Null pointers Can be Replaced to store a pointer to the
	gnorder predecessor or The in order Successor of the
	Node. These Special pointers are called threads and
	Binary trees Containing threados are called Threaded binary tree.
	There are two ways to Construct threaded benary trees
	> One way threaders
	-> Two-way threading.
	One way Threading :
	In a threaded benary tree of the threads appeared in
	the Left field (In order predecessor). Then that threading
	Called Left threading

31/01/19 3. Advanced Concepts of trees Binary Search tree : Two way thirted. A Binary Search tree is a binary tree in which the modes are arranged in an order. -) All the nodes in the left subtree have a Values less than that of the root node. All the nodes in the Right Sub tree have a value greater than the Root node. If it is Equal 9t is placed on the Right Subtree. Eg: 25, 30, 40, 50, 80, 17, 19, 35, 38 Construct a Binary Search tree with the following slement 20,40,10,30,6,15,25,2,8,35 20

SPECIAL Construct a Binaey Search tree with following letters COMPUTER R/08/19 Basic operations on Binary Search tree; 1) Search (): It finds on Element in a tree. 12 a) Insert (); It inserts an Element in a tree. 3) Traverse (): Traversing from one mode to another tree. delete (): It Removes on Element from the tree. 4) Defining a mode having some data, references to it Left and Struct node Right child mode . int data ; Struct mode * left; struct node * right; 3;

Scanned by CamScanner

٠, Search Operation: When sver an Element is to be Searched start Searching 4 trom the Root node. data > If the chara is Less than the key water. Search for the Element in the Regent sub tree, Otherwise search for the Element in the left Sub bree. > Follow the Same Algorithm for Each mode. 16220 16-Un Successful 20 - data 14- key 180 3 14220 (15) 1625 25 14- Successful. 16218 35 14>7 14=14 ¢ Insert Operation Whenever an Element is to be inserted first Locate its Proper Location. Start Searching from the Root node if the keyvalue less than Root data, then search for Empty Location on Left Sub Tree and Insert the data in Otherwise Search for Empty location in the Right Jub tree. Procedure to Search and Insert a node in Bingry Search Starting from the Root, 7 O check whether the value in root node and searched Value are Equal of So Value is found.

Scanned by CamScanner

(2) If Searched Value is Less than the mode value. @ If current node as no child, searched value does not Exsist in the binary Search tree @Other wise handle the Left child with Same Algorithm. B) If search value is Greater than Node value. (a) If current node has no Right Child, Searched value does not Exist in the binary search tree then insert a node. (5) Otherwise handle the Right child with same Algorithm Create a Binary search tree with the 9 nput given belaw 98,2,48,12,56,32,4,67,23,87,55,46 ð JInsert 21, 39,45, 54,63 48 Yas In order: 294, 12, 21, 23, 32, 39, 45, 46, 54, 55, 56, 63, 67, 87,98

For a Binary Search tree the inorder give ascending Order of the Element. SPIER HE HERETOIN

Title: AVL TREE

Date : Page No. :

```
#include <stdio. h>
#include <stdlib.h>
struct node
ę
   int key;
  Struct node *left;
  struct node * right;
  int height;
3;
int max (int a, int b);
int height (struct node *N)
£
    IF (N == NULL)
     return O;
    return N > height;
 3
 int max (int a, int b)
 5
     return (a>b)?a:b;
 3
```

```
Date :
Title :
                                                   Page No.:
Il helper function that allocates a new node with the given key and
   NULL left and right Pointers
struct node * new Node (int key)
   struct node * node = (struct node *) malloc (size of (struct node));
E
   node -> key = key;
   node -> left = NULL;
    node -> right = NULL;
    node -> height = 1: 11 new node is initially added at leaf
    return (node);
 4
 11 A utility function to risht rotate subtree rooted with y
 struct node * right Rotate (struct node *y)
 ę
     struct node *x=y->left;
     struct node *T2= x > right;
     11 perform rotation
     >c >right = y;
     y -> left = T2;
```

The:
Date :
Page No.:
If update heights

$$y \rightarrow height = max (height (y \rightarrow left), height (y \rightarrow yight)) + 1 ;
 $x \rightarrow height = max (height (x \rightarrow left), height (x \rightarrow night)) + 1 ;
 $x \rightarrow height = max (height (x \rightarrow left), height (x \rightarrow night)) + 1 ;
If Return new root
yeturn x;
If A utility function to left potate subbree rooted with y
struct node * left Rtate (struct node * x)
f
struct node * y = x $\rightarrow yight;$
struct node * $T_{2} = y \rightarrow left;$
If petform syntation
 $y \rightarrow left = x;$
 $x \rightarrow yight = T_{2};$
If vedate heights
 $x \rightarrow height = max (height (x \rightarrow left), height (x \rightarrow light)) + 1;$
 $y \rightarrow height = max (height (y \rightarrow left), height (y \rightarrow xight)) + 1;$
If Return new root
return y;
}$$$$

Т

Scanned by CamScanner

whether

Date : Page No. :

```
Il If this node becomes unbalanced, then these are 4 cases
11 Left Left Case
 if (balance >1 ff key < node > left > key)
    return right Rotate (node);
 Il Right Right Case
  if (balance <- I ff key > node - right -> key)
      return right Rotate (node);
  1/ Left Right Case
   if (balance >1 ff key > node -> left -> key)
        node > left = left Rotate (node > left);
    5
        return night Rotate (node);
     3
   1 Right Left Case
     if (balance <-1 4f key < node -) night -> key)
     5
         node -> right = right Rotate (node -> right);
         return leftRotate (node);
      3
     1) return the (unchanged) node pointer
      return node:
```

```
Title:

Date :

Page No.:

Void Pre Order (struct node * root)
```

```
if ( mot != NULL)
```

```
Printf ("Y.d In", root -> key);
```

```
Pre Order (mot -> left);
Pre order (mot -> night);
```

ş

e

```
}
Void main()
```

24

```
ş
```

```
int duta, Ch;

struct node *root = NULL;

while (1)

E

Printf (" 1. Insertion 2: Display 3: Deletion 4. Exit(n");

Printf (" enter Jour Choice In");

Scanf ("'/d", fch);

Switch (ch)

E

(ase 1: Printf (" enter the Value to be inserted (n");

Scanf (" y.d", fdata);

root = insert (not, duta);

break;
```

```
Date :
Title :
                                                   Page No. :
   Case 2: Printf (" Pre order traversal of the given tree is: In");
              Pre Order (mot):
              break;
    Case 3: exit(o);
  3
3
3
output :
   1. Insertion 2. Display 3. Fuit
   Enter your choice ANURAG
    1
    enter the value to be inserted
    10
    20
    30
    40
    50
    25
    Entur your choice
    2
    Be order traversay of the given tree is:
      30 20 10 25 40 50
```

Title: Breadth First Search	Date : Page No. :
#include < stdio.h> int a E20 J E20 J, 9 E20 J, Vi	sited [20], n, é, j, f=0, x=-1;
int 6 [20] [20]:	
Void bes (int v)	
$\begin{cases} \\ f_{bs}(\dot{e}=1; \dot{e}=n; \dot{e}+1), \\ if (a trates of the integration of the integratio$	FURAG

Scanned by CamScanner

Title :

٤

Date : Page No. :

Void main() int V: Print # ["In enter the no. of verbices In"]; scant ("y.d", fn); for (è=1; ic=n; it+) q 2 [i]= 0; Wisited Eij=0; for (i=1: i <= n: i++) bEiJEJJ = 0: ANURAG Printh ("In Enter graph data in matrix form: In"); Rr (i=1; ic=n; it+)ering Engineers for (j=1; j= =n, j++) ş scanf ("Y-d", tacijcij); £ 3 3

Title :

Date : Page No. :

Printf ("In Enter the starting Vertex: In"); Scanf ("Y-d", tr); Visited Er] = i: Printf ("In The nodes which are reachable are:") bES(V); for (é=0; éc=n; é+t) £ if (visited (i)) Printf(" y.d (t", é); Printf ("IN BES is not Possible - All nodes are not else q reachable "); break Engineering Engineers 3 Printt ("In spanning Tree matrix: In"); 4 for (e=1; e<=n; i++) { for (j=1;jz=n;j++) Printf ("It Y.d", b Eiszis); Printt (4 1n"); 3 2

Output :

Enter graph data in matrix form:

Enter the starting Vertex: 1

Bfs is not possible The nodes which are reachable are: 123 Bfs is nost Possible. All nodes are not reachable Spanning tree matrix:

<pre>#include <stdie h=""> Void DFS (int); int GENJEDJ, Visited ENJ, n;</stdie></pre>	
Void DFS (int); int GE103 E103, Visited E103, n;	
int GE103 [10], Visited [10], n;	
int 600000;	
Void main ()	
{ int i.j.x;	
Printf ("Enter number of Vertices : (n");	
scanf (" y.d", fn); Printf ("In Enter adjacency matrix of the gr	aph:");
for(i=1; i <= n; i +)	
$\begin{cases} Engineering Engineers \\ for (j=1; j<=n; j++) \end{cases}$	
E Scanf ("Y.d", fG[i][j]);	
3 3	
for (i=1; i<=n; i++)	
visited [i]=0;	

Title :

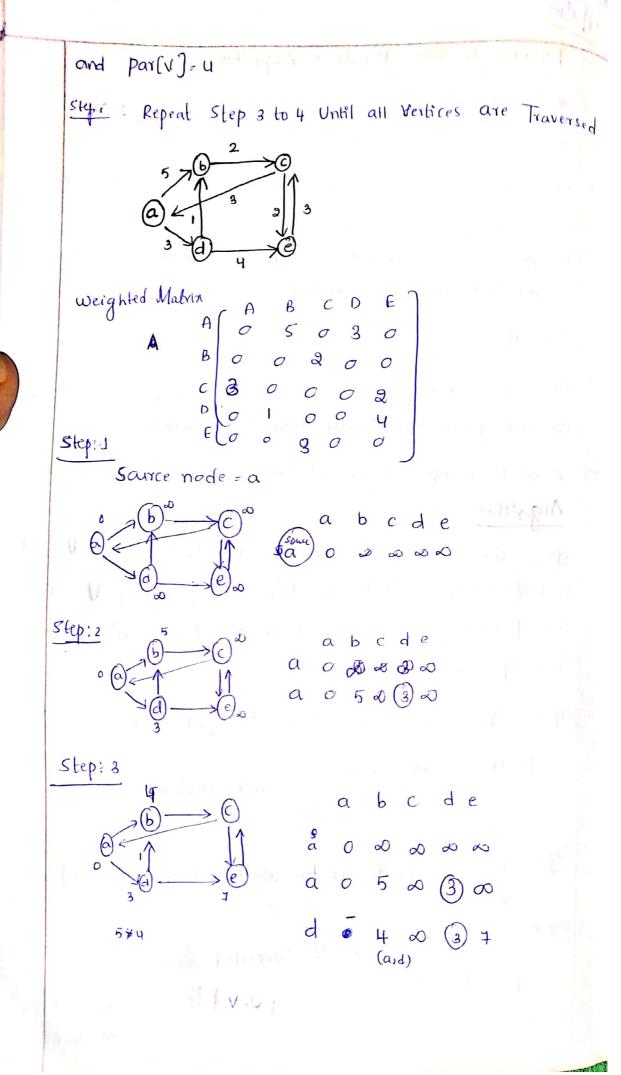
Date : Page No. :

```
printf (" Enter the root node: (n");
 scanf (" y.d ", fr);
 DFS(r);
 Printf (" DFS Tree: (n");
 for ( e=1; e<=n; e++)
 5
     Br (j=1; j<=n; j++)
     Printf (" It Y.d", bEiJEiJ);
     Printf ("In");
  3
3
Void DFS (int i)
E
    int j;
    Visited [i]=1;
    for (i=1; i<=n; i++)
        if (! visited [i] ff G[i][i] == 1)
       5
           DFS (i);
            b[i][]=1;
        3
 3
```

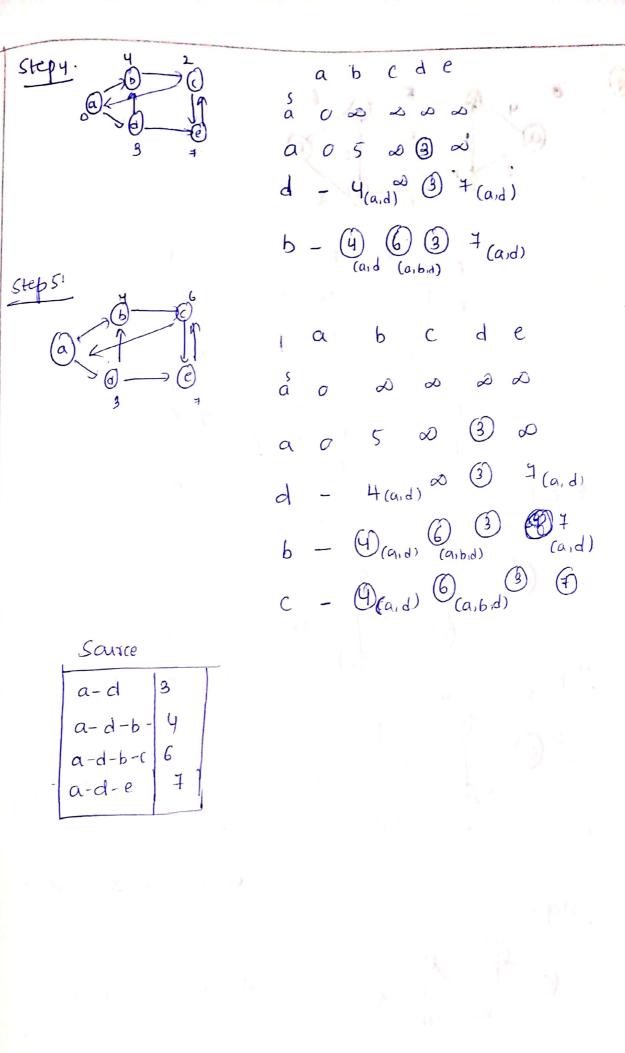
Output:

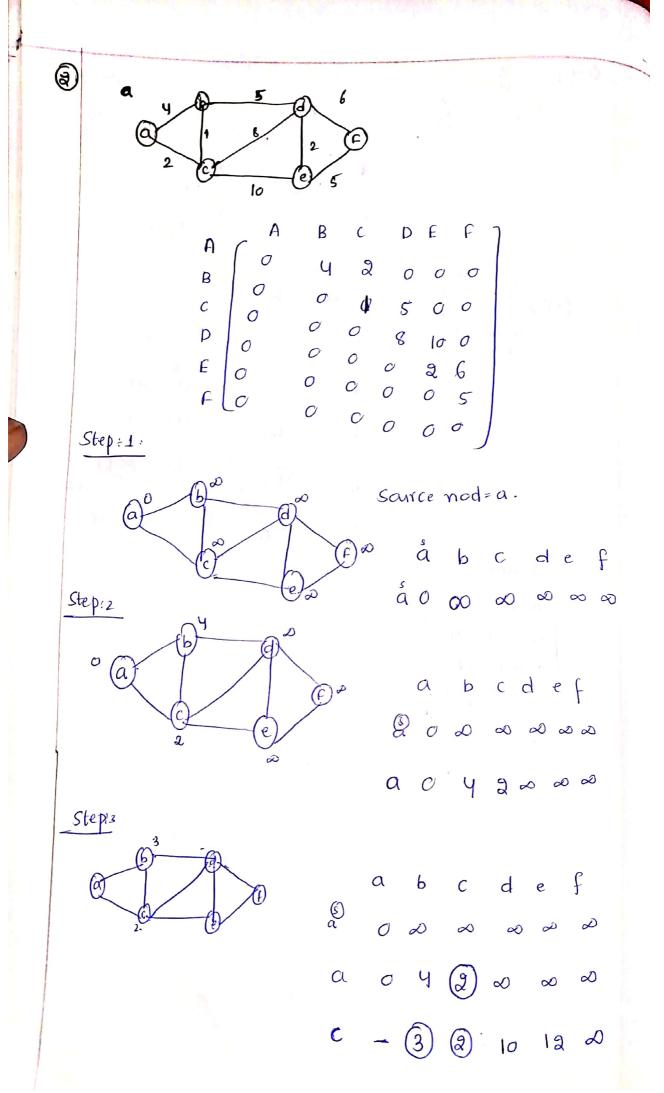
Enter the no. of Vertices = 4 Enter the adjacency matrix of the graph:

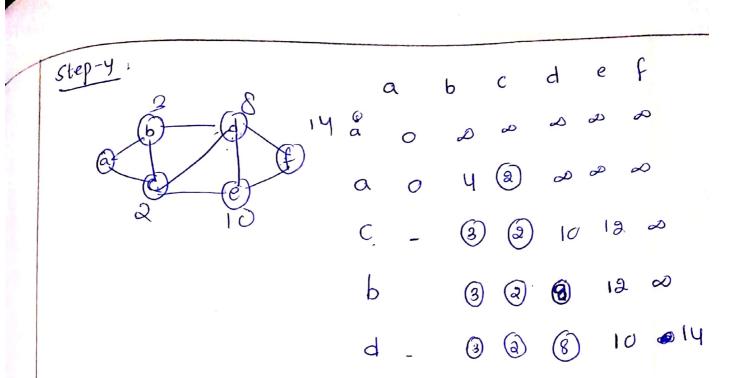
Enter the root node : 1


Ofs tree :

6	J	D	0
0	U	1	0
0	0	0)
0	0	0	0


Scanned by CamScanner


21/9/19 procedure to solve drjkstra's Algarithm > given a graph G(V,E). where 'V' is the set of Vertices and 'E' is the set of Edges in the graph. -> given a single vertex VI the problem is to find the shortest path from v, to Every other node. Initially Each vertex is assigned as unreachable and cost of the path is given as infinite to reach that vertex. - Cost of Saurce Vertex is given as o -) An Empty set is filled by Traversing Each vertex and by calculating its shortest path from the source. -> A set is completed on all the Vertices are Traversed. Algorithm: <u>stept</u> Consider Source Vertex as X. Distance of V is the Cost of Reach in Vertex'V' from a parent of Wis the the parent of node v and weight of [U,v] is the Cost of Traversing from Uto V Step: 2: Initialize distance of V' is Equal to infinite and parent of sequende to and distance dis (a)=0 V. par (V) = nil steps select a node. U for which weight of (a, v) is mimon Stery For Each Vertex 'V' Connected with 'U': if dis(v)> dis[u]+weight [U,v] then dis[v]=dis[u]+ weight [U,V]


Scanned by CamScanner

Scanned by CamScanner

$$a - c = 2$$

 $a - c - b = 3$
 $a - c - b = d - 8$
 $a - c - b - d - e = 10$
 $a - c - b - d - t = -14$

27 9/19 1) Folding method ! 8 The folding method was with the following steps: C Step:1 Divide the key value into a number of parts ie Divide K into parts where Each part has the same number of digits Encept the Last part which may have Lesser than the other part. Step: 2: Add the Individual parts to get the hash value. If any Carry is Occured ignore. Example : 34567 100 321 5468 34 32 56 54 ' 7 68 33 97 122 12 24 Collision : If two Key values want to share the same index Yalue (or) -> Two different keys produce the Same Location, then there is a possibility of two key values. → To Reduce or to remove the collision a method is Used to solve this problem Collision resolution Techniques The two most popular methods of resoluting of Collision are

1) open addressing. a) Chaining. Collision resolution by open addressing : In open addressing we follow the following Techniques. 1) Linear Probing 2) guadratic probing 3) Rehashing probing. Probing: The process of Examining the memory Location is called memory locations in the hash table is Called Probing. The value which is used in probing is called Probe.

CO - PO Attainment

		S.No	1	2	ω	4	5	6	7	∞	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
		Reg.No	18911A1219	18911A1222	18911A1229	18911A1247	19911A1201	19911A1202	19911A1203	19911A1204	19911A1205	19911A1206	19911A1207	19911A1208	19911A1209	19911A1210	19911A1211	19911A1212	19911A1213	19911A1214	19911A1215	19911A1216	19911A1217	19911A1218	19911A1219	19911A1220	19911A1221	19911A1222	19911A1223	19911A1224	19911A1225	19911A1227
		Assignm ent1 (5M)	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
		Theory (20M)	15	4	7	17	20	18	17	18	19	17	17	9	14	16	12	13	13	19	14	17	16	19	18	20	17	18	19	10	20	16
1		M1- Q1 (2M) CO1	1	1	1	2	2	2	2	1	2	2	2	1	2	2	2	2	1	2	1	2	1	1	2	2	2	2	2	2	2	2
VIID-1 Thr		M1-Q2 (ZM) CO2	2	1	1	2	2	2	1	2	2	1	1	1	2	2	1	2	2	2	1	2	1	2	2	2	2	. 1	2	2	2	~
MID-1 Threshold 60%		M1- Q3 (2M) CO3	1	1	1	1	2	2 .	2	2	1	1	2	1	2	2	1	1	1	2	1	2	2	2	2	2	2	1	2	2	2	~
%	PART-B	M1- Q4 (5M) CO1	4	0	2	5	5	5	4	5	5	S	4	з	3	ω	2	ω	ω	5	4	4	4		4		4	5	4	2		
	-B	M1-Q5 (5M) CO2	4	1	1	4	5	З	5	4	5	5	5	2	ω	ω	ω	ω	ω	4	4	4	4		n 4		4	5	5	1		
	ALL	M1-Q6 (4M) CO3	ω	0	1	ω	4	4	3	4	4	ω	ω	1	2	4	з	2	ω	4	З	з	4	4	4	4 u		4	4	1	4	
	ak	Assignm ent2 (5M)	5	5	5	5	5	5	5	5	5	5	5	5	ъ	5	5	л	5	5	5	5	- v	n U	ли	n u		л <i>С</i> л	5		n U	
	R. L. F.	Theory (20M)	14	3	6	16	19	17	16	17	18	16	16	00	13	15	11	12	12	18	13	16	10	0T	19	10	aT	17	18	9	10	15
2		M2- Q1 (2M) CO3	1	1	1	2	2	2	2	1	2	2	2	1	2	2	2	2	1	2	0	2		J +	2 ×	J N	~ ~	2	2		J +	0
MID-2 Thr		M2-Q2 (2M) CO4	2	1	1	2	2	2	1	2	2	0	1	1	2	2	1	2	2	1	1	1	1	2 K	2	J P		, .	. ~		_ ,	~
Threshold 60%		M2- Q3 (2M) CO5	1	0	0	1	2	. 2	2	2	0	1	1	1	2	2	1	1	0	2	1	2	, L	~ ~	2	, v	- ^		, r	J N	, I	-
%	PART-B	M2-Q4 (4M) CO3	2	0	1	2	4	4	З	ω	4	ω	ω	0	2	4	ω	1	з	4	ω	. ω	u 4	A 0	4	. u		> u	- +	> +	ω	ω
	B	M2-Q5 (5M) CO4	4	0	2	5	4	5	ω	5	s	5	4	ω	2	ω	1	ω	ω	5	4	. 4	л 4	<i></i>	5	ω 1	л (A U	۽ د	л г	ω	ω
	23722	M2-Q6 (5M) CO5	4	1	1	4	5	2	5	4	5	5	5	2	ω	2	ω	ω	ω	4	. 4	. 4	4 1	4	4	4	л.	л u	-	л I	4	4
Threshold	60% (45M)	End Exam (75M)	34	16	4	16	41	29	38	41	46	40	28	10	33	45	15	11	26	46	30	3/	95	30	59	31	45	50 3	25	53	26	32

VIDYA JYOTHI INSTITTUE OF TECHNOLOGY

_	-		1						-	-	_		_																		_		_		_			
69	68	67	66	65	64	63	62	61	60	59	58	57	ac	50		54	53	52	51	50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32
19911A1266	19911A1265	19911A1264	19911A1263	19911A1262	19911A1261	19911A1260	19911A1259	19911A1258	19911A1257	19911A1256	19911A1255	19911A1254	TODITUTED	100110122	1001101752	19911A1251	19911A1250	19911A1249	19911A1248	19911A1247	19911A1246	19911A1245	19911A1244	19911A1243	19911A1242	19911A1241	19911A1240	19911A1239	19911A1238	19911A1237	19911A1236	19911A1235	19911A1234	19911A1233	19911A1232	19911A1231	19911A1230	19911A1229
5	5	5	5	5	5	5	5	5				1 0	-	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
15	9	17	14	0	15	17	17	aT	10	71	TT	CT CT	15	15	14	18	19	15	14	14	18	19	19	16	17	20	16	15	18	18	15	20	16	9	17	14	13	11
2	2	2		0	2	2	1		J N	2	~	1 C	2	2	2	2	1	2	2	2	2	2	1	2	2	2	2	1	2	2	2	2	2	2	2	2	1	1
~	2		• •			~ ~	~ ~		2	1	.,		2	1	1	2	2	.2	2	2	1	2	2	2	2	2	1	2	2	2	2	2	2	2	2	1	1	2
~	- L		J +			, -	- ~	J ,		1	2	2	2	2	1	2	2	2	2	2	2	2	2	1	2	2	1	1	2	2	2	2	1	1	2	2	1	2
4	~		A 1	<i>u</i> 0			л 4		4	1	4	2	4	з	3	4	5	ω	2	2	4	5	5	4	.4	5	4	4	5	3	4	5	4	1	4	4	3	2
	2+		л.	4		A .	4	Δ	4	1	4	2	З	з	4	4	5	ω	ω	2	S	4	5	5	4	5	4	4	4	5	3	5	4	1	4	4	3	з
	ω,	-	ω	4	0 1	5	ω.	4	ω	1	ω	2	2	4	ω	4	4	ω	ω	4	4	4	4	2	ω	4	4	3	3	4	2	4	3	2	3	1	4	1
	5	5	5	5	5	5	5	5	5	5	5	. 5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	S	5	5	5	5	5	5	5	5	5	5	5
	14	8	16	13	-1	14	16	16	15	6	16	10	14	14	13	17	18	14	13	13	17	18	18	15	16	19	15	14	17	17	14	19	15	8	16	13	12	10
	1	2	2	1	0	2	2	1	2	2	2	2	2	2	1	2	1	2	2	2	2	2	1	1	2	2	2	1	2	2	2	2	1	2	2	2	1	1
	2	1	1	1	0	2	2	1	1	1	2	1	2	1	1	2	2	2	2	2	1	2	1	2	1	2	1	2	2	2	2	1	2	1	2	1	1	2
	2	1	2	1	0	2	1	2	1	1	2	2	2	1	1	1	2	2	2	2	2	1	2	1	2	1	1	1	2	2	2	2	1	1	2	2	1	2
	з	1	2	4	0	2	2	4	ω	0	5	2	1	4	3	4	ω	ω	З	4	З	4	4	2	ω	4	з	3	3	4	1	4	3	2	2	1	4	1
	4	2	4	2	0	2	5	4	4	1	4	1	4	ω	ω	4	5	2	2	1	4	5	5	4	4	5	4	3	5	2	4	5	4	1	4	ω	ω	1
	2	1	5	4	0	4	4	4	4	1	ω	2	ω	ω	4	4	5	3	2	2	5	4	5	5	4	5	4	4	3	5	3	5	4	1	4	4	2	ω
	26	26	48	26	6	26	26	26	26	28	37	26	26	33	16	40	35	40	27	39	40	47	37	38	30	47	56	33	48	39	26	36	33	14	36	31	30	25

														-	-		-	_	_			_		_					_		1						_
107	106	105	104	103	102	101	100	99	86	97	96	26	94	93	92	91	90	68	88	87	86	58	84	83	82	81	80	79	78	77	76	75	74	73	72	71	70
19911A12A4	19911A12A3	19911A12A2	19911A12A1	19911A12A0	19911A1299	19911A1298	19911A1297	19911A1296	19911A1295	19911A1294	19911A1293	19911A1292	19911A1291	19911A1290	19911A1289	19911A1288	19911A1287	19911A1286	19911A1285	19911A1284	19911A1283	19911A1282	19911A1281	19911A1280	19911A1279	19911A1278	19911A1277	19911A1276	19911A1275	19911A1274	19911A1273	19911A1272	19911A1271	19911A1270	19911A1269	19911A1268	19911A1267
5	5	5	5	5	5	5	5	5	5	5	5	5	5	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
0	18	17	12	18	15	10	13	18	20	19	17	12	18	0	20	15	18	17	14	16	18	11	18	19	12	18	15	17	12	11	17	16	17	20	13	15	17
0	2	2	1	2	2	2	2	2	2	2	1	2	2	0	2	2	2	2	1	1	2	1	2	1	1	2	2	2	2	2	2	2	1	2	2	2	1
0	2	2	2	2	2	1	2	2	2	1	2	2	2	0	2	2	2	2	1	1	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2
0	2	2	2	2	2	1	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	1	1	2	2	2	2	2	2	1	2						
0	4	4	2	ω	4		-																		2	2	2	2	2	1	2	2	2	2	2		
	-	-		-		ω	2	5	5	5	5	4	4	0	5	2	4	ω	2	4	5	ω	5	5	3	5	3	3	2	2	4	4	5	5	ω	2	4
0	4	4	2	5	ω	2	2	S	5	5	4	1	л	0	S	ω	5	4	4	4	4	ω	4	ъ	2	З	2	5	2	2	4	3	4	5	2	5	4
0	4	ω	ω	4	2		ω	2	4	4	ω	1	ω	0	4	4	ω	4	4	4	4	2	4	4	2	4	4	3	3	2	3	3	3	4	2	з	4
u	5	5	5	5	5	5	5	5	5	ъ	5	5	5	0	ъ	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
0	17	16	11	17	14	9	12	17	19	18	16	11	17	0	19	14	17	16	13	15	17	10	17	18	11	17	14	16	11	10	16	15	16	19	12	14	16
0	-	2	1	2	2	2	2	1	2	2	1	2	2	0	2	2	1	2	1	1	2	1	2	1	1	2	1	2	2	2	2	2	1	2	2	2	1
0	2	1	2	2	2	1	1	2	1	1	2	2	2	0	2	1	2	1	1	1	1	1	2	2	2	1	2	1	1	2	2	2	2	2	2	1	1
0	2	2	1	2	2	1	2	2	2	1	2	2	2	0	1	2	2	2	1	2	2	1	1	2	1	2	. 2	2	1	1	2	2	2	2	1	1	2
0	4			. w	2	1	3	2	4	4	2	1	2	0	4	4	ω	4	4	з	4	2	4	ω	2	4	4	3	3	1	3	3	3	3	2	3	4
0	4	4	~ ~			2	2	5	5	s	s	3	4	0	s	2	4	ω	2	4	4	3	4	5	3	5	3	3	2	2	3	4	4	5	3	2	4
-	4	4	~ ~	, ,	, u	2	2	5	5	s	4	1	5	0	s	ω	s	4	4	4	4	2	4	5	2	3	2	5	2	2	4	2	4	5	2	5	4
H	v ec	17	0	5	40	33	32	41	44	46	26	26	26	A	46	26	33	37	18	32	35	14	28	44	14	44	41	45	12	26	39	44	36	37	20	26	26

																											Г		-					Г	Г		
145	144	143	142	141	140	139	138	137	136	135	134	133	132	131	130	129	128	127	126	125	124	123	122	121	120	119	118	117	116	115	114	113	112	111	110	109	108
19911A12E3	19911A12E2	19911A12E1	19911A12E0	19911A12D9	19911A12D8	19911A12D7	19911A12D6	19911A12D5	19911A12D4	19911A12D3	19911A12D2	19911A12D1	19911A12D0	19911A12C9	19911A12C8	19911A12C7	19911A12C6	19911A12C5	19911A12C4	19911A12C3	19911A12C2	19911A12C1	19911A12B9	19911A12B8	19911A12B7	19911A12B6	19911A12B5	19911A12B4	19911A12B3	19911A12B2	19911A12B1	19911A12B0	19911A12A9	19911A12A8	19911A12A7	19911A12A6	19911A12A5
5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	0	5	5	5	5	5	5	5	5	5	5	5	5	5	5
20	19	16	19	17	18	20	17	17	18	17	18	19	20	16	19	20	20	18	13	19	19	20	0	17	16	18	16	15	16	16	19	16	13	20	7	20	15
2	1	2	2	2	2	2	2	2	1	2	2	1	2	2	2	2	2	2	2	2	2	2	0	2	2	2	2	2	2	2	1	2	2	2	1	2	2
2	2	1	2	2	2	2	1	2	1	2	2	2	2	2	2	2	2	1	2	2	1	2	0	- 1	2	1	2	2	2	2	2	1	2	2	1	2	1
2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	• 2	2	1	2	2	0	2	2	1	2	2	2	2	2	1	1	2	2	2	2
5	5	4	5	4	5	5	5	4	5	4	ω	5	5	4	4	5	5	5	2	5	5	5	0	5	5	5	5	2	5	5	5	4	4	5	1	5	4
5	5	5	4	4	4	5	4	4	5	ω	5	5	5	ω	5	5	5	4	ω	5	5	5	0	4	ω	5	ω	ω	ω	ω	5	5	з	5	1	5	3
4	4	3	4	3	3	4	З	ω	4	4	4	4	4	ω	4	4	4	4	2	4	4	4	0	ω	2	4	2	4	2	2	4	ω	1	4	1	4	3
5	5	s	5	5	5	5	5	л	S	5	5	5	5	5	5	5	5	5	5	5	5	5	0	5	5	5	5	5	5	5	5	5	S	5	5	5	5
19	18	15	18	16	17	19	16	16	17	16	17	18	19	15	18	19	19	17	12	18	18	19	0	16	15	17	15	14	15	15	18	15	12	19	6	19	14
2	1	1	2	2	2	2	2	2	1	1	2	1	2	2	2	2	2	2	1	2	2	2	0	2	2	2	1	2	2	2	1	2	2	2	1	2	1
2	1	1	2	2	2	2	1	2	1	2	1	2	2	2	2	2	2	1	2	1	1	2	0	1	2	1	2	1	2	2	2	1	2	2	1	-	-
1	2	1	1	2	2	2	2	2	1	2	2	1	2	2	2	2	2	1	2	1	2	2	0	2	2	1	2	2	1	2	2	1	1	2	1	2	2
4	4	З	4	2	3	4	3	2	4	4	4	4	ω	з	4	4	ω	4	2	4	3	4	0	З	2	3	2	4	2	1	4	3	1	w	1	4	3
5	5	4	S	4	4	5	4	4	5	4	3	S	5	з	4	4	s	s	2	s	s	4	0	S	4	5	5	2	5	5	4	4	3	5	1	5	4
5	5	5	4	4	4	4	4	4	5	3	5	S	5	З	4	S	S	4	з	s	s	S	0	3	3	5	3	3	3	3	5	4	ω	5	1	5	3
30	26	28	36	28	32	31	26	31	39	16	44	52	50	26	54	50	50	17	32	27	47	38	A	38	30	31	43	26	38	41	37	37	26	39	2	47	26

	-	_									5																										
183		181	180	179	178	177	176	175	174	173	172	171	170	169	168	167	166	165	164	163	162	161	160	159	158	157	156	155	154	153	152	151	150	149	148	147	146
20915A1205	2001501200	20915A1203	20915A1202	20915A1201	19911A12H6	19911A12H5	19911A12H4	19911A12H3	19911A12H2	19911A12H1	19911A12H0	19911A12G9	19911A12G8	19911A12G7	19911A12G6	19911A12G5	19911A12G4	19911A12G3	19911A12G2	19911A12G1	19911A12G0	19911A12F9	19911A12F8	19911A12F7	19911A12F6	19911A12F5	19911A12F4	19911A12F3	19911A12F2	19911A12F1	19911A12F0	19911A12E9	19911A12E8	19911A12E7	19911A12E6	19911A12E5	5 19911A12E4
σ ι	7	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5 8	2 5	1 5	5 0	5 6	8 5	7 5	5 9	5 5	4 5
19	16	15	15	17	17	20	19	-5	14	19	17	17	20	19	18	17	20	19	18	16	19	20	18	19	19	18	18	19	1								
2	2	2	2	2	2	2	2	0	1	2	2	2	2	2	2	2	2	2	2	2	1 1) 2	3 2					9	18	18	14	18	17	18	20	20	17
2	2	2	2	1	2	2	1	0	2	2	1	2	2	2	2	2	2	1					2	2	2	2	2	2	2	1	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	0	2	1	2						1		2	2	2	2	2	2	2	1	2	1	2	2	2	2	1	2	2	2	2
5	4	4	4	4							10	2	2	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	N
4	4				4	5	5	0	ω	5	5	4	5	5	4	4	5	5	S	ω	5	5	5	4	4	5	5	5	4	5	4	4	5	5	5	5	ω
		3	4	5	4	5	5	0	5	5	4	ω	5	5	4	4	5	S	ω	ω	5	5	4	× 5	5	4	З	S	4	4	2	4	4	3	5	5	4
4	2	2	1	ω	ω	4	4	0	1	4	ω	4	4	4	4	з	4	4	4	4	4	4	3	4	4	4	4	4	4	4	2	4	3	4	4	4	4
	5	G	U	G	5	5	5	5	5	5	5	5	5	ъ	5	5	5	5	ċ5	5	5	5	5	5	5	5	5	S	5	5	5	5	5	5	5		
18	15	14	14	16	16	19	18	-6	13	18	16	16	19	18	17	16	19	18	17	15	18	19	17	18	18	17	17	18	17	17	13	17	_	1		5	5
2	2	1	2	2	~	2	N	0	1	2	2	1	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	2	7 1	3 2	_	_	17	19	19	16
2	1	2	1	1	2	2	1	0	2	2	1	2	1	2	2	2	2	1	2	2	1	1	2	2	2	1					2	2	2	2	2	2	2
1	2	2	2	1	2	2	2	0	2	-	-	2	2	0	2	2	2	2	2	1	2						2	1	2	1	1	2	1	2	2	2	2
4	2	2	1	ω	2	4	4	0	1	3	3	4	4	4	3	3	4	-				2	1	2	2	2	2	2	1	2	2	1	2	2	2	2	2
5	4	4	4	4	4	4	5	0	2	5	5	4	s	5	4			4	3	4	4	4	З	3	4	4	4	3	4	4	2	4	2	4	4	4	3
4	4	3	4		4	s	4	0	s	s	4	3	5	s		3	S	4	5	3	S	5	5	4	3	s	4	5	4	5	4	4	5	4	5	4	3
42	26	25	1	20	16	4	- (1)		-		+		+		4	4	4	S	ω	3	S	5	4	5	5	3	3	5	4	4	2	4	4	3	4	5	4
L					0	2	8	12	26	42	29	36	41	40	31	50	47	38	35	42	40	32	30	29	37	35	39	37	46	43	33	48	35	40	36	40	26

	2		202	3			603		6	COs		CO AI	%ot stu	No of s	A	192	191	100	188	187	186	185	184
M2 Q5	M2 Q2	M2 Q4	M2 Q1	MI Q7	MI Q3	Q6	Q2	Q5 MI	Q1	Method			%of students scored 60%	No of students attemped	Average marks	20915A1214	20915A1213	20915/1212	20915A1210	20915A1209	20915A1208	20915A1207	20915A1206
3.0	0.0	2.0	0.0	2.0	0.0	3.0	0.0	3.0	0.0	value		3.0	98.96	192	4.9	S	s u	n u	n v	S	s	5	5
5	7		1.0	-		l	1 5	ť		Attain ment	8	3.0	97.40	192	16.0	19	13	01 0T	16	17	17	14	18
			U	3						Assigr		0.0	0.00	192	1.8	2	1	7	1	2	2	2	2
			5.0	>						Assignments		0.0	0.00	192	1.7	1	1	ц с	1	2	2	2	2
						2					ASSES	0.0	0.00	192	1.7	2		. 2	1	2	2	-(
			-	4						CO Attainment (Internal - Theory)	ASSESSMENT OF COS FOR THE COURSE	3.0	86.46	192	3.9	л	4 U	, v	2	4	S	з	ъ
			1.4	>						CO Attainment nternal - Theory	OF COs I	3.0	86.46	192	3.8	σ.	4 U	ω	5	5	4	ω	4
										×.	FOR THE	2.0	77.08	192	3.1	4	ν u	ω	ω	2	2	ω	ω
										CO Att	COURS	3.0	98.96	192	4.9	<u>л</u> (л v	5	5	5	5	s	с,
			3.00	3				CO Attainment (End Exam)		3.0	97.40	192	15.0	18	17	15	15	16	16	13	17		
										t (End		0.0	0.00	192	1.7	2	1	2	1	2	2	2	2
												0.0	0.00	192	1.5	,		1	1	2	2	2	2
										Overall		0.0	0.00	192	1.6	2	1 1	1	1	2	2	-	2
			2.00	08 6						Overall CO Attainment		2.0	70.31	192	2.9	4	- w	з	2	2	2	2	2
										inment		3.0	82.29	192	3.7	A .	4 5	5	5	з	5	2	5
										1		3.0	83.33	192	3.7	л 4	~ ~ ~	3	5	5	ωu	ω.	4
												3.0	99.47	189	33.1	71	27	43	44	26	92	20	25

Course End Survey Form

1. Are you able to analyze the representation of various data structures and implement the mechanisms of Stacks and Queues with their applications.46 responses

Slight 1 Moderate 2 Substantial 43

2. Are you able to implement the operations like searching, insertion, deletions and traversing mechanisms on Binary Trees? 46 responses

Slight 1 Moderate 3 Substantial 42

Are you able to implement various advance concepts of trees with real time applications?
 46 responses

Slight2Moderate4Substantial40

4. Are you able to implement various algorithms on graph data structures, including finding the minimum spanning tree, shortest path with real time applications, etc? 46 responses

Slight1Moderate3Substantial42

5. Are you able to outline the concepts of hashing, collision and its resolution methods using hash function? 46 responses

Slight2Moderate1Substantial43