DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE FILE

LINUX PROGRAMM|

(ESTD - 1999)

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA, Approved By A.L.C.T.E., New Delhi,
Permanently Affiliated to J.N.T. University, Hyderabad)

(Aziz Nagar, C.B.Post, Hyderabad -500075)

O

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

REGULATION: R15

BATCH: 2017-2021

ACADEMIC YEAR: 2019-20

PROGRAM: B. TECH (COMPUTER SCIENCE AND ENGINEERING)
YEAR/SEM: I1/1

COURSE NAME LINUX PROGRAMMING

COURSE CODE: A15512

PREREQUISITE: OPERATING SYSTEM
COURSE COORDINATOR: M.VIJAYA
COURSE INSTRUCTORS:

K.SAMATHA

Dr.K. RANGA RAO
P.LAKSHMI PRIYA

COURSE FILE INDEX

S.NO. DESCRIPTION

1 Syllabus

2 Text Book & Other References

3 Time Table

4 Program Outcomes (PO’s) ,Program Specific Outcomes (PSO’s)
&PEO’s

5 Mapping Of Course Outcomes (CO’s) With Program Outcomes (PO’s)
& Program Specific Qutcomes (PSO’s)

6 Academic Calendar)

7 Course Schedule

8 Lesson Plan

9 Assignment Questions

10 Mid Question Papers I & 11

11 Unit Wise Questions

12 Minutes of Course Review Meeting

13 [.ecture Notes

14 Power Point Presentation

I5 Semester End Question Papers

16 Extra Topics Delivered (if any)

17 Innovations In Teaching and Learning

18 Assessment Sheet — Co Wise (Direct Attainiment)

19 Course End Survey Form

5 ' Syllabus

\&

LTPC
3103

LINUX PROGRAMMING

Course Objectives:

e To understand the Linux utilities, sed and awk concepts to solve problems.

s To implement in C some standard Linux utilities such as Is, mv, cp etc. using system calls.

» To understand process concepts and Interprocess communication in Linux.
Course Outcomes:

¢ To understand and make effective use of Linux utilities and Shell scripting language (bash})

to solve problems.
» To develop the skills necessary for systems programming including file system
programming, process and signal management.

» To apply basic skills of inter process communication

» To develop the basic skills required to write network programs using Sockets
UNIT - I:
Linux Utilities: File handling utilities. Security by file permissions. Process utilities, Disk
utilities, Networking commands, Filters, Text processing utilities and Backup utilities.
Sed-Scripts, Operation, Addresses, Commands, Applications, awk-Execution, Fields and Records,
scripts, operations, patterns, actions, functions, using system commands in awk.
UNIT - II:
Shell programming with Bourne again shell(bash): Introduction, shell responsibilities, pipes
and Redirection, here documents, running a shell script, the shell as a programming language.
shell meta characters, file name substitution, shell variables. command substitution. shell
commands, the environment, quoting, test command, control structures. arithmetic in shell, shell
script examples, interrupt processing functions, debugging shell scripts.
UNIT - 1II:
Files : File Concept, File types, File System Structure, Inodes, File Attributes, Library Functions,
kernel support for files, system calls for file I/O operations- open, create, read, write, close.
Directories: Creating, removing and changing Directories -mkdir, rmdir, chdir, obtaining current
working directory. Scanning Directories-opendir, readdir, closedir, rewinddir functions.
UNIT - 1V:
Process: Process Concept. process identification, process control - process creation, waiting for a
process, process termination, Kernel support for process, zombie process, orphan process, Process
APIs. Signals - Introduction to signals, Signal generation and handling, Kemel support for
signals, Signal function, unreliable signals, reliable signals, kill, raise, alarm, pause, abort, sleep
functions.
UNIT - V:
Inter Process Communication: Introduction to IPC, IPC between processes on a single computer
system, IPC between processes on different systems, pipes-creation, IPC between related
processes using unnamed pipes, FIFOs- creation, IPC between unrelated processes using FIFOs
(Named pipes), differences between unnamed and named pipes. open and close library functions.
Message Queues- APls for message queues, Semaphores-APls for semaphores Shared Memory:
APls for shared memory. Sockets: Introduction to Sockets, Socket address structures, Socket
system calls for connection oriented protocol and connectionless protocol.

&)

Text Books & Other
References

Text Books, Reference Books

Text Books

1 Unix Concepts and Applications, 4th Edition, Sumitabha Das, TMH

2 | Unix and shell Programming, B.A. Forouzen and R.F. Gilberg, Cengage learning.

3 Unix Network Programming, W.R.Stevens, PHI

Suggested / Reference Books

1 Unix System Programming using C++, T.Chan, PHIL.

2 Beginning Linux Programming, 4th Edition, N. Mathew, R. Stones, Wrox, Wiley India Edition.

3 Unix for programmers and users, 3rd Edition, Graham Glass, King Ables, Pearson.

4 Unix shell Programming, S. G. Kochan and P. Wood, 3rd edition, Pearson Education

5 Shell Scripting, S. Parker, Wiley India Pvt. Ltd.

6 C Programming Language, Kernighan and Ritchie, PHL.

QOther Resources

1 iare.ac.in/sites/default/files/lecture_notes/LP

2 https://www.smartzworld.com/n otes/linux-programming-Ip/

3 vijit.ac.in/it/study-material/

" Time table

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY
Department of Computer Science & Engineering
Sec: CSE-A
Year/Sem: III -I W.E.F:17/06/2019 ROOM NO: N202
pay | 9:00- | 10.00- | 11.00 - 12;00 12.45- | 1.45- | 2.45-
10.00 11.00 |12 .00 1.45 2.45 3.45
12.45
MON PE 0S LP(T}) ACS LAB
TUE CN OE — LP FLAT OS(T)
WED 08 OE % LP CN | FLAT(T)
THU LP CN 0s) PE FLAT MC-111
FRI LP/CN/OS LAB E MC-ITI CN PE(T)
SAT PE FLAT 0S FLAT LP CN(T)
Subject Name of the Faculty
LP Linux Programming Ms.M.Vijaya
CN Computer Netwaorks Ms.G Surekha
0S Operating Systemns Ms.T.Maanasa
FLAT Formal Languages and Automata Theory Mr.B.Thikkana
HCI/PPL | Human Computer Interaction/Principles of | MR.Zeeshan
Programming Language .
0SS & CN) Ms.M.Vijaya/
LAR f)}getrstmg Syﬁlﬁlr?; & Computer Networks Ms.T.Maanasa /
a roug) Ms.G Surekha
ACS LAB | Advanced Communication Skills Lab Ms.Indira
Priyadarshini
6 MC - 11 Quantitative Methods & Logical Reasoning Vijay Babu
Class Incharge Ms.T.Maanasa
[I1 YEAR Coordinator Ms.M.Vijaya
’]
H. -

O Program Outcomes (PO’s), Program
Specific Outcomes (PSO’s) &

Program Educational Objectives
(PEO’s)

Programme Outcomes (PO’s)

1.

10.

11.

Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization for the solution of complex
engineering problems.

Problem analysis: Identify, formulate, research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles .of
mathematics, natural sciences, and engineering sciences.

Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the
specified needs with appropriate consideration for public health and safety, and
cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and
research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.
Modern tool usage:Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools, including prediction and 10Qodeling to
complex engineering activities, with an understanding of the limitations.

The engincer and society: Apply reasoning informed by the contextual
knowledge to assess socictal, health, safety, legal, and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.
Environment and sustainability: Understand the impact of the professional
engineefing solutions in societal and environmental contexts, and demonstrate
the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.
Communication:Communicate effectively on complex engineering activities with
the engineering community and with the society at large, such as, being able to
comprehend and write efiective reports and design documentation, make
effective presentations, and give and receive clear instructions.

Project management and finance: ~ Demonstrate knowledge and understanding of
the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to

engage in independent and life-long learning in the broadest context of
technological change. :

Program Specific Outcomes

PSO 1: The ability to design and develop Algorithms to provide optimized solutions for
societal needs

PSO 2: Apply standard approaches and practices in Software Project Development
through trending technologies

Program Educational Objectives (PEO’s)

PEO1: Enhance the employability of the graduate in software industries/Public
sector/Research organizations

PEO2: Acquire analytical and computational abilities to pursue higher studies for
professional growth

PEO3: Work in multidisciplinary project teams with effective communication
skills and leadership qualities

PEO4: Develop professional ethics among the students and promote
entrepreneural abilities

4 Mapping Of Course
Outcomes (CO’s) with
Program Qutcomes (P‘O’s) &
Program Specific Outcomes
s (PSO’s)

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY
Department of Computer Science & Engineering

Year &Sem: OIYear I Sem

Course name: Linux Programming
Course Code; A15512
Regulation: R15

COURSE OUTCOMES:

After completing this course the student must demonstrate the km‘)wledge and ability to
co1 Understand and make effective use of Linux utilities.
coz2 Able to write shell scripts to solve the problems.
co3 Develop the skills necessary for file system and diréctory handling.
Co4 Learn the concepts of process and signal system calls.
Cco5 Implement inter process communication mechanisms,
CO -PO MAPPING:
6) PO1|PO2 (PO3 |PO4|POS |(PO6 | POT7 |POB | PO9 ig T; ig
co1 3 3 2 2 2 - - 3 3 - 1 2 2
co 2 3 3 3 2 20| - - 3 3 2 3 2
co 3 3 3 3 3 1 3 - 3 - 2 2 2
co 4 3 3 3 2 2 - - 3 3 2 3 2
| CO5 3 3 3 3 2 3 1 3 - 2 2
i Avg 3 3 2.8 2.4 1.8 3 2 3 3 1.75 24 2
CO - PSO MAPPING:
PSO01 PSO2
| co1 3 2
& co2 3 2
Cco3 3 2
CO4 3 2
cos 3 2 X
Avg 3 2

Signature of Course Coordinator, Sign. of

Academic Calendar

Vidya Jyothi Institute of Technology (Auntonomons})
(oo For MG & NEA, Apprenysd Bp LS QI Now Dol Poprignsid S ilnied ta SNTTL Bhderpbad)
e Nagar, C.13 Poar, Bpdersbod -S000TS]

11 I Teeh & 11 Seanegtor A

rthe deademic YVear JHIEIN

THVEAR | SEMESTER Conrmrmcement of Closs Wk
17.06:2019
From | T Mmoo,

1 Speil of Ensiruction 17062019 | FROEINT | § WESKS
| Mid Exnmingtions | waoszaee | 1rosantt |4 DAYE
TESpeli af Testrutive | ienazaee | oiiname | 7weeks
Dusschen Holidays | omangoe | 12302m0 | WEER
I Spelt of Testructios Coetinsation PHIDZOIG | 19302019 | § WHER
I Bl Brardintions LI020MS | 2440209 | 4 DAYE
Proctive] Bxaminations 25102018 | 200209 | IDAYS
Bettermuent Exsnimitions ApATING | 0131209 | 3PAYS
End Beenssivr Exzmminatians G211.2019 | 18502009 | 2 WEEKS
Suppiemantnry Examinsiees 19,13.20019 | 04322019 | 3WEEKS
a;ﬁﬁ;ﬁ Examinations (Far Letosit RUETETOCE BETRIRJUCH B T
wmm Warlatmil [y gpama | 2etronte [anays
_&ngmmrﬁmmmmzmwﬁm el B A

HVEAR I SEMESTER CommeneeinT ol Class Worl,

— . H2.12,2009
¥ Spell of Instrocsan 02422008 | 012080 | & WEBKS
Perpal Hodfidayy 1082030 | 1501509 | 5 Daxs
TodmicaliSponts fist /002020 | 18013020 | IDAYS
B Speil of Enstrueitian Contimustices 20062000, | (1 0230M | 2 WEEKS
1 Mid Bxmminations T02.3020 | nENZINR0 | § WRER
H Speltof Tostruction. e | 64043000 |3 WEEKS,
©f 341 Esseninations | o6tz | 02042030 | 4mAYS
Proetieal Exnminsions 12092007 | 17042000 {4DAYS
Beiterment Bxaminstions FHret 20) ITA4INRD 54 DEYE
Enil Semester Exnminatines | 23042000 |-DBOS20M |2WHEKS
Supplementary Bxadnntions 1 stos2000 | 25082000 |2 WEEKS
Cumimtneemsent ol dasyes il be frmm IRGRETH
’ B o

L

-

Course Schedule

Distribution of Hours in Unit — Wise

Unit | Topic Bookl Book2 Book3 :f";;‘('“i‘;
Chl-1.1-1.11 10
I Linux Utilities Ch2-2.1-2.12
Ch3-31-3-24
1| Sourne ngrin anety Chs-5.1-5.15 :
[T | Files and Directories Ch3-3.1-3.4 Ch3-3.1-3.7 10
Process 12
[V | Signals Ch7-7.1-7.9
Inter Process Ch2,Ch4,
Y, Communication Ch6,Ch10, 16
Chi2.Chl3
Total contact classes for syllabus coverage 62
Assignment Tests : 02(Before Mid1 & Mid2 Examination)

Number of hours available in Semester/ Year: 64

iff$count -eq 10]
then
echo “condition is true”
else
echo “condition is false™
fi
8.Write a Shell script to find factorial of a given inleger
Ans.
!/bin/bash
echo "enter a number"
read num
fact=1
while [$num -ge 1]
do
fact="expr $fact* $num’
num="expr $num - 1°
done
echo "factorial of $n is $fact”
Assignment Operators
There are followang assignment operators supported by TINU N PROGR ANMNING

Show Examples

Op Description Example

= Simple assignment operator. Assigns values from right side operands

) C=A+Bwill assign v
side operand.

of A+ BintwC

+= Add AND assignment operator, It adds right operand 1o the left opera

. - C+= Ais equivalent to
and assign the result to [eft operand,

+ A

-= Subtract AND assignment operator. ft subtracts right operand from the
operand and assign the result to left operand. C -= A is equivalent 1o ¢
-A

*= Multiply AND assignment operator. It multiplics right operand with ¢
operand and assign the result to lelt operand. C *= Aas equivalent to
A

=" Checks if the value of two operands are equal or not, if values are not equal then cond (A != B) is
becomes true.

> Checks tf the value of lelt operand is greater than the value of right operand., if yes the (A By is
condition becomes true.) Lrue.

< Checks if the value of left operand is less than the value of right operand. if ves then (A <B)ist
condition becomes true.

>= Checks if the value of lefl operand is greater than or equal 1o the value ol right operan (A >= B) s
ves then condition becomes true. true.

<= Checks if the value of lelt operand is less than or equal 1o the value of right operand. i (A <= B) s
then condition becomes true.,

Syntax

if [expression | |
then
Statement(s) to be executed if expression | is true
elif [expression 2]
then
Statement(s) to be executed if expression 2 is true
elif [expression 3]
then
Statement(s) to be exccuted 1f expression 3 is true
else .
Statement(s) to be executed if no expression is true
fi

This code is just a series of if statements, where each if is part of the elveclause of the previous
statement. Here statement(s) are executed based on the true condition, 1 none ol the condition is
true then efse block is excéeuted

The case...esac Statement

You can use multiple if..clif’ statements to perform a multiway branch. However. this 1s not
always the best solution. especially when all of the branches depend on the value of a single
variable.

Unix Shell supports case..esac statement which handles exacily this situation. and 1t does so
more elficiendy than repeated if...elif statements.

There is only one form of case...csac statement which has been deseribed in detail here

e case...esac statement

The case...esace statement in the Unix shell is very similar to the switch...case statement we have
in other programiming languages like C or C++ and PERL, elc.

In this chapter. we will discuss shell loops in Unix. A loop is a powerful programming tool that
enables you to execute @ set of commands repeatedhy In this chapter. we wili examine the
following types of loops available to shell programmers

+ The while loop

» The for loop

« The until loop

o The select loop

You will usé different loops based on the situation. For example. the whileloop executes the
given commands until the given condition remains true; the until loop exccutes unul a grven
condition becomes true.

Onee vou have pood programming practice vou will gain the expertise and thereby. start using
appropriate loop based on the situation. Here. while and for loops arc available i most of the
other programming languages like C, C++ and PERL. etc.

Nesting Loops

All the loops support nesting coneept which means you can put one loop inside another sinular
onc or different loops. This nesting can go up to unlimited number of times based on your
requirement.

[lere is an example ol nesting while loop. The other loops can be nested based on the
programming requirement 1n a semilar way

Nesting while Loops

It is possible to use a while loop as part of the body of another while loop.

Svntax

while commandl ; # this is loopl, the outer loop

do
Statement(s) to be executed it command] is true

- s
. e P Ya e By

"

3

« The continue statement

The infinite Loop

All the oops have a limited life and they come aut once the condition is [alse or true depending
on the loop.

A loop may continue forever if the reguired condiion 1s not met \ Joup that whecuates tareva
without terminating exccutes for an mfinite number of times. For this reason. such loops arc
called infinite loops.

Example

Here is a simple example that uses. the while loop to display the numbers zero to nine —

#1/bin/sh
a=10

until [$a -1t 10]
do
echo $a
a=expr $a -+ 1°
done

Fhis foop conunues forever because a 15 abwavs greater than or equal to 10and 11 never Joss
than 10.

The break Statement

The break statement 1s used to terminate the execution of the entire loop, afier completing the
execution of all of the lines of code up to the break statement. It then steps,down to the code
following the end of the loop.

Syntax

The lollowing break statement is used to come out of a loop

break

The break command can also be used to exit [rom a nested loop using this format —

break n

Here n specifies the n™ enclosing loop to the exit from
Example

Here is a simple example which shows that loop terminates as soon as abecomes 3 —

#1/bin/sh

a=()

This statement is useful when an crror has occurred but yYou want oty to exceute the next

teration of the loop.

Synfax

continue

Like with the break statement. an integer argtment can be giv
commands from nested loops.

continue n

Here i specifies the o™ enclosing foop 1o continue (rom.

en to the continue command o skip

ol
-~
3
-
2o

FIFO file:-

First i first out queue is a type of file used for Inter Process Communication(IPC) between the
processes.

The FIFO file is also called as the pipe.

Pipes are tools that allow two or more system processes to communicate with each other using a
file that acts as a pipe between them.

Socket file:-

A socket is a type of file used for network communication between the processes.

Sockets are also tools used for inter process communication. The difference between sockets and
pipes is that sockets will facilitate communication between processes running on different
systems, or over the network.

Symbolic link:-

It is a type of file that contains the address or path-name of another.

A Symbolic link is a tool used for having multiple filenames that reference a single file ona
physical disk. They appear in a file system just like an ordinary file or a directory.

File system structure

]

J oot
opt ust dev kemel alc var i
‘.
B |
“ default
(homa)
Tiv
password
In UNIX login
file)
system,

cach directory has a parent. The root directory has no parent and it is represented by /' and which
contain more files, sub-directories etc.

root:-
root is a directory file and it has many number of sub-directories under it. These sub-directories

have more sub-directories and other files under them.

bin:-

10.Number of links

In UNIX, file system has a inode table which keeps track of all files.
Fach entry of inode table is an inode record which contains all attributes of a file.

File Attributes
The attributes of a file can be determined using start and fstart system calls and here we are using

a header #include<sys/start.h>

Every file has many file attributes such as:-

ATTRIBUTES

MEANING

File type

Type of file

Access permission

File access permission for owner, group, others

Hard link count

Number of hard links in a file

vID

User ID or Owner ID

GID

The file group ID

File size

The size of a file in bytes

Last access time

The time at which the file was last accessed

Last modify time

The time at which the file was }ast modified

Last change time

The time the file access permission, UID, hard
link was last changed

Inode number

The system inode number of a file

File system 1D

The file system [D where the file is stored

Library functions

UNIX system provides a large number of ¢ functions as libraries. Some of those functions will be
used frequently for performing operations, while the others are very-specialized in their

applications.
FUNCTIONS DESCRIPTION
abs Integer absolute value
ctime Convert date and time
fopen Open a stream
printf I-Tormatted output
fputc Put a character or a word on stream
getcwd Get current working directory path name
strcat String concatenation

is NULL, fflush() flushes all open output streams.
Syntax:- The function prototype of ftlush() is
#include<stdio.h>
int fflush(FILE* stream);
4. fseek():-
The fseek() function sets the file position indicator for the stream pointed
to by the stream.
Syntax:- The function prototype of fseek() is
#include<stdio.h>
int fseek(FIL E*stream, long offset, int whence);
5. fgete():-
This function reads the next character as an unsigned char from the
stream and returns its value, converted to int.
Syntax:- The function prototype of fgetc() is
#include<stdio.h>
int fgetc(FILE *stream);
6. gete():-
The gete() function is equivalent to fgetc(} function except that it can
@ be implemented as a macro which evaluate stream more than once.
Syntax:- The function prototype of getc() is
#include<stdio.h>
int getc(FILE * stream);

7. getchar():-

The getchar() function is equivalent to fgetc() with stdin as the value

of stream argument.

Syntax:- The function prototype of getchar() is
#include<stdio.h>
int getchar(void);

8. fpute():-

The fpute() function is declared in the header stdio.h. The fputc() converts
the character ¢ to type unsigned char and will write it to the stream.
End of file is returned if a write error occurs, otherwise the character ¢
is returned.

Syntax:- The function prototype of fputc() is
6 #include<stdio.h>
int fpute(int ¢,FILE* stream);
9. pute():-
The putc() function is same as the fputc() function except that most
system implements it as macro, making it faster.
Syntax:- The function prototype of putc() function is
#include<stdio.h> a
int putc(int ¢, FILE* stream);
10.putchar():-
The putchar() function is equivalent to fputc() with stdout as a value of
the stream argument.
Syntax:- The function prototype of putchar() is

o

Formatted Input functions

The following are the formatted input functions:-
scanif{)

fscanf()

sscanf()

1. scanf():-
The scanf() function reads formatted input from the stream stdin under
the control of the template stream template.
The optional arguments are pointers to place which receive the resulting
values.
Syntax:- #include<stdio.h>
int scanf{const char* template);
2. fscanf():-
The fscanf{) function is just like scanf{) except that the input is read from
the stream instead of stdin.
Syntax:- #include<stdio.h>
int fscanf(FILE * stream, const char * template);

3. sscanf():-)
The sscanf{) function is also same as scanf{) except that the characters
are taken from the NULL terminated stream s instead from stream.
Reaching the end of stream is treated as end of file condition
Syntax:- #include<stdio.h>
int sscanf(char *s, const char*template);

System calls

System calls can be defined as the signals generated to kernel for performing specific tasks.

System calls are the programmers functional interface through which programs can directly
interact with heart of the UNIX(kernel).To make use of its services such as file creation each
system call has a predefined task to be performed for there are system calls to open-a file, close a
file, execute a process, write a data to a file, display the time of the day & so on.

Low Level File Access System Calls:-

1. Open(): This function is used to open or create a file,after a file is created any process can call

the open() function to get the file descriptor to refer the file.
The function prototype of open(} is
#include <Sys/types.h>
#include <sys/stat.h>
#include<fctrl.h>
#nclude<error.h>
int open(const char *path name,int flag);
or
(int mode (or) mode tmode)

Standard libraries and system calls provide complete control over the creation and maintenance of
files and directories,

Some of the functions used are:-

chmod()

chown()

unlink()

link(}

mkdir()

rmdir()

chdir()

1. chmod():-
The chmod() i.e change mode system call helps to modify the permission flag,
Syntax:- The function prototype of chmod() is
#include<sys/types.h>
#include<sys/stat.h>
#include<fcntl.h>
#include<error.h>
#include<unistd.h>
int chmod(const char* filename, int mode};
2. chown():-
The chown() system call alters the owner or group of a file.
chown() system call helps in modifying the owner and group ID's of a file.In this on success, it
returns a (), on error returns -1,
Syntax:- The function prototype of chown() is
#include<sys/types.h>
#include<sys/stat.h>
#include<fentl.h>
#include<error.h>
#include<unistd.h>
int chown(const char* filename, uid_t owner id, gid t groupid);
3. unlink{):- .
The unlink() system call deletes the hard link of a file from the directory
Syntax:- The function prototype of nnlink() is
#include<sys/types.h>
#include<sys/stat.h>
#include<fentl.l>
Hinclude<error.h=
#include<unistd.h>
int unlink{const char* filename},
4. link():-
The link() system call allows the user to create hard link to the existing path.
Syntax:- The function prototype of link() is
#include<sys/types.h>
#include<sys/stat.h>
#include<fentl.h>
#include<error.h>

UNIT-4
PROCESS

PROCESS CONCEPT

® A process is a instance of a program under execution.
e It is an entity that provides the execution environment for a program &runs the program.
e It has its own address space & comprises a control point.
e CPU runs only 1 process at a time.
e [t uses various system resources like memory devices etc.
o [t also request the services from the system which are performed by the Linux kernel.
e Each linux process has a parent & 1 or more children.
» Itis created by calling the fork() or vfork() system call.
e It may execute | or more programs by invoking exec system.
s The lifetime of a process begins when it is created and ends when the process terminates
by calling exit system call.
6 » When the process having one or more children to terminate, all its processes becomes
' orphans and are inherited by init process.

o Each and every process has a unique non-negative identifier called the process ID.

~

PROCESS IDENTIFICATION

e A PID stands forprocess identification number.

e It is an identification number that is automatically assigned to each process when it is
created on a unix-like operating system. '

e [tis needed in order to terminate a frozen program with the kill command.

e The process init is the only process that will always have the same PID on any session &
that PID is 1.

* A very large PID does not necessarily mean that there are anywhere near that many
processes on a system

6 e The default maximum value of PID is 32,767.

¢ There is a numbered directory in/proc corresponding to each PID currently on the system.

» Each process in linux has a unique id and has a parent.

* We can get tShe process id of a running process and its parent’s process id using following
functions,
1.pid t getpid()
2.pid_t getppid()

¢ Here PID represents process id and PPID represents parent process id.

PROCESS CONTROL

The concept of process control deals with 3 types of independent mechanism namely :

Once the child and parent process are created, they both start executing the statement.
During the execution the child process gives few features of the parents like data space,
root directory, session ID, process group ID etc.

Ex: to demonstrate the process execution consider the following function:
#include<sys/types.h>

#include “outhdr.h”

intvar = 6;

char store[| = “iron armour”;

main{void)

{

int v=88;

pid_tpid;

if(write{fSTDOUT_FILENO, store, sizeof(store)-1! = sizeof(store)-1)}

err - sys(there is error in writing:};

if((pid= fork())<0)

err_sys(“‘error while using fork™);

else if{pid==0)

{

Vart-;

V++;
h

else
sleep(2);
exit(0);
}

3.Process Termination

A process is an instance of an executing program.
A process performs certain tasks and terminates. The end of the process is called as
termination.
A process can terminate normally or abnormally.
a) Normal termination of a process
A process is said to be terminated normally if,
o It executes a return statement in the function. This is similar to calling the exit

function.

e It calls the exit functions. This function flushes the buffer and then returns to
the kernel.

e It calls the exit functions. This function immediately returns to the kernel &
flushing buffers.

It is called by the exit function internally.
b) Abnormal termination of a process
A process is said to be terminated abnormally if,
e It calls abort function which generates the SIGABRT signal.

TR o N \-‘s'u*’,!-r“! ° .
. P b e WY v .

O

&B@%a‘ ;5 —‘“i E* "'v-'a-;("'"z
-n wmtﬁ ecutoni - Wa;Lerxecuﬂonh
_5”5@ “’”‘"“ st Spstamimode g, System niude -

T “‘Aui - e

B ﬁ'ﬁ%r %ﬁ_) *
% f:'" ‘.K . P; —_&?&‘p =t -}& 5

ZOMBIE PROCESS

e When a process terminates & its parent does not wait for it then it is called a Zombie
Process.)
e [t remains in zombie state until it is cleaned up by its parent.
e It does not have any code,data or stack.
e [t still uses the system’s fixed-size process called proc structure.
¢ Proc structure maintains the information process 1D, the terminated status of the process &
the amount of CPU time taken by the process.
¢ Too many zombies reside in a system and they reduce the maximum number of process
that can be active.
o Init prevents the system from too many zombies.
e The ps(1) command prints Z to indicate the process status & a zombie process as zombie.
e Ex: #include<stdlib.h>
#include<sys/types.h>
#include<unistd.h>
int main()
{
intpid;
pid_tchild pid();
child pid = fork();
if (child_pid == 0)
{
exit(0);
} :
else{
sleep(3); .
system(*‘pspid,ppid,status,cmd”);
}

Syntax : #include<sys/type.h>
#include<unistd,h>
Pid_t fork(void);

2} Viork()

3) exit()

It creates a new process.
The purpose of creating a new process is to execute a new program,
The calling sequence & return values are similar to the fork() function.
Function returns 0 in the child process & the new child’s process ID in the
parent.
it does not copy the address space of the parent into child bcoz the child will
not refer that address space.
Syntax : #include<sys/type.h>

#include<unistd.h>

Pid_tvfork(void);

it terminates a function normally.
It takes an argument called status.that helps to examine the exit status of a
process. if,
It is called without the exit status.
Main returns without a return value.
Main “falls off the end”, then the exit status of the process is undefined.
Syntax: #include<stdlib.h>
Void exit(int status);
When it is called, it performs all the cleaning operations of the standard I/O
library. i
Before closing the program, the fclose() function is called for all open streams.

It waits for the first child to terminate.

It blocks the caller until a child process terminates.

it does not support job control

It suspends execution of the current process until one of its children terminates
Syntax: #include<sys/wait.h>

Pid_t wait(int *status_loc);

5) waitpid()

It waits for the particular child to terminate.

It can prevent the caller from blocking

it support job control.

It suspends execution of the current process until a child specified by pid
argument has changed state .

Syntax:
#include<sys/wait.h>

i1) fo
it will resume execution of the process by sending it a CONT signal.

SIGNAL GENERATION AND HANDLING

Signal generation

e Every signal has a symbolic name starting with SIG.

® The signal names names are defined in signal.h, which must be included by any C
program that uses signals.

¢ The names of the signals represent small integers greater than 0.

* 2 signals SIGUSRI1 & SIGUSR2 are available for users & do not have a preassigned
use.

» SIGFPE or SIGSEGYV are generated when certain errors occur, other signals are
generated by specific calls such as alarm.

» (ienerate signals from the shell with the kill command.

SIGNAL DESCRIPTION) DEFAULT ACTION

SIGABRT Process abort Implementation dependent

SIGALRM Alarm clock Abnormal termination

SIGBUS Access undefined part of memory object Implementation dependent

SIGCHLD Child terminated, stopped/continued ignore

SIGCONT Execution continued if stopped continue

SIGFPE Error in arithmetic operation as in division by | Implementation dependent

ZEIO

SIGHUP Hang-up on controlling terminal Abnormal termination

SIGIL Invalid hardware instruction Implementation dependent

SIGINT Interactive attention signal Abnormal termination

SIGKILL Terminated Abnormal termination

SIGPIPE Write on a pipe with no readers Abnormal termination

SIGQUIT Interaction termination, core dump Implementation dependent

SIGSEGV Invalid memory reference Implementation dependent
@, SIGSTOP | Execution stopped stop

SIGTERM Termination Abnormal termination

SIGSTP Terminal stop stop

SIGTTIN Background process attempting to read stop

SIGTTOU Background process attempting to write stop

SIGURG High bandwidth data available at a socket ignore

SIGUSR1 User-defined signall Abnormal termination

SIGUSR2 Use-defined signal2 Abnormal termination

Signal handling

o

It takes two arguments i.e., signo& handler.

The signo is the name of the signal like SIGINT defined in the <signal.h> header. The
handler is a pointer to a user defined signal handler function.

This function takes a signo as formal argument & returns void as the return type.

On success, the signal function returns a pointer to the previous signal handler for a signal.
[t returns an errors with a value SIG_ERR.

The handler argument can take different values as given in table:

value meaning
SIG_IGN Ignore the signal. SIGKILL & SIGSTOP cannot be
ignored
SIG_DFL Perform default action
Address of signal handler Call the signal handler
Advantages

To perform some other action instead of default action.
To block a signal temporarily.
To restore the signal handler for a signal after it has been altered.

UNRELIABLE SIGNALS

Unreliable signals means when a signal occurs, it could get lost, that is the process would
never know the occurrence of the signals.

Also, the process have control over the signals that is a process can only catch the signal or
ignore it.

But it can not block a signal so that it can retrieve the signal when it is ready.

All signals were unreliable in earlier versions of linux.

Problem with unreliable signals

With earlier versions of linux is that each time the signal occurs, the action for this signal
was reset to its default action.

Ex: the following snapcode shows the way the earlier systems handled the interrupt signal
i.e., SIGINT.

intsigint_handler();

Signal(SIGINT. sigint_handler);
Sigint_handler()

{
Signal(SIGINT. sigint_handler);

The problem with this code is that, after the first occurrence of the SIGINT signal, if the
interrupt signal occurs another time just before the call to signal function in the signal

-

int raise(intsig_no);

» Sig no is the signal number of a signals to be sent to one or more processes
indicated by pid.

» Pid is to kill the process ID of the recipient.

¢ Both kill & raise system calls returns 0 on success & -1 on error.

Alarm FUNCTION

e It is used by a process to set timer.

e The timer expires after a certain number of real clock seconds.

¢ When the timer expires, the kernel sends the SIGALRM signal to the calling process.

o The default action for the signal is to terminate the process.

e If there is a previously registered alarm clock for the process that has not yet expired then
the call to alarm function returns the number of CPU sec left in process timer.

e The call to alarm cancels the effect of the previous alarm call & reset the timer with new
alarm clock. '

e Syntax: #include<unistd.h>

Unsigned int alarm(unsigned inttime_in_seconds);

Pause FUNCTION

¢ It suspends the execution of the calling process until a signal is caught.
e [t will be aborted only when a signal is caught & that signal handier returns.
» The function returns -1 with errno set to EINTR.
» The alarm & pause functions can be used to implement the sleep function.
» Syntax : #include<unistd.h>
Int pause(void);

abort FUNCTION

» [t terminates a process abnormally.

o [t generates SIGABRT signal.

o When a process calls the abort function, it terminates the process & never returns to the
caller.

e [fthe process does not terminate itself from the signal handling function, the abort function
terminates the process when the signal handler returns.

o Syntax: #include<stdlib.h>

Void abort(void);

Sleep FUNCTION

o [t suspends the caller for the specified number of CPU seconds.
* The calling process wakes up if either the time specified by secs argument is elapsed.
¢ It returns a value 0 if the specified number of sec has elapsed.

e In case the sleep returns early bcoz the process caught a signal, the sleep returns the
number of sec it could not sleep.
e The actual return time of the sleep may be at a time later than requested, becoz of the
processor scheduling delays.
Syntax: #include<unistd.h>
Unsigned int sieep(unsigned int secs);

: bF] . : 1
* 3 ; - , . K ,.*%;‘w] N - ,13?1 s . 2 K:’y«_’{u‘(& el

The above fig explains the IPC between two processes on different computer systems.
Pipes-creation:
Pipes

Linux system uses pipes to establish interprocess communicationmechanism allowing two or
more processes to send information to each other.

They are commonly used from within shells to connect the

standard output of one utility to the standard input of another.

A pipe provides unidirectional flow of data.A pipe is created using the pipe() function
Syntax:

#include<unistd.h>

int pipe(intfd);

A pipe function returns two file descriptors fd[0] and {d[1].The {d[0] is open for reading from and
fd[1] is open for writing to the pipe.The data flows from one end of the pipe to the other end.

The pipe function returns ‘0 on success or *-1° on error.
IPC between related processes using unnamed pipes:

Unnamed pipes may be only used with related processes (parent/child or child/child having the
same parent). They exist as long as their descriptors are open.

Syntax: .
#include <unistd.h>
int pipe(intfd|2])

RETURNS: success : 0 error: -1

mkfifo creates a named pipe called fileName.
IPC between unrelated processes using FIFO:

The client-server paradigm comprises of a single server process, which works all the time,
receives requests from clients and gives them responses. A client is the process that
manages the inputs and outputs for a live user, Clients come and go but the server works
all the time. The clients communicate with the server using an interprocess
communication mechanism. Each process in the paradigm has a system-wide mechanism
for receiving messages. In the example in a later section, we will use the FIFO as the
mechanism for receiving messages. That is, the server will have a FIFO, where clients can
put messages for the server. Similarly, each client will have a FIFO, where the server can
put in messages for that client.

Response v.ag3

- /,.,——-

e

— A
~
e !
R %
euast o
1 ; .
L] F F
i i] o - i
3 F E
[O Q
rd

i,
s e e

e

™

o=

Interprocess Communication between client and server using FIFOs

A FIFO can be opened using the open system call. After open, we can use the read and write

system calls for reading from and writing to the FIFO, using the file descriptor returned by open.

Of course, as per our design, we will either read or write to a FIFO but not do both. A process, be

it a client or the server, reads from its own FIFO for receiving data and writes on other process's
6 FIFO for sending data 1o that process.

Differences between Unnamed and Named Pipes:

Unnamed pipe:

1) These are created by the shell automatically.

2) They exists in the kernel.

3) They can not be accesses by any process, including the
process that creates it.

4) They are opened at the time of creation only.

MESSAGE QUEUES:
API’S FOR MESSGE QUEUES:

The <sys/ipc.h> header defines a structure ipc-prem data types that stores the owner and creator
and group IDs. The assigned name key and the read — write perissions of a message queue.

The message table entry data type is structmsgid — ds,that is defined in the <sys/message.h>
The following mentioed are the different Unix system V API’s for messages,
1) msgget()
2) msgsend()
3 msgrev()
4) msgctl()
1) msgget()
The msgget system call is used to get the message queues in Unix programming environment.
Syntax:

#include<sys/msg.h>
Intmsgget(key_t key, intmsgflag);
The msgget) argument returns the message queue identifier associated with key.
2) msgsnd()

This system call is used for sending messages in an Unix environment.

Syntax:

#include<sys/msg.h>
Intmsgsnd(intmsqjid, const void *msgp, size _t msgz , intmsgflg):

The msgsnd() function is used to send a message to the queue associted with the message queue
identifier specified by msqid.

The msgp argument points to a user-defined buffer that cotain first a field of type long int that will
specity the type message. and then a data portion that will hold the data bytes of te message.

The structure below is an example of what this user-defined buffer might look like, structmymsg

{

-

The following are the unix API’S for semaphores,

1) Semget().

2) Sempot().

3) Semctl().

The function definitions of semaphores are,
#include<sys/types.h>

#include<sys/ipc.h>

#include<sys/sem.h>

Intsemctl(intsem_id, intsem_num, int command, ...);
Intsemget(key_t, intnum_sems, intsem_flags);
Intsemop(intsem_id, structsembuf, *sem_ops, size tnum_sem_ops);
1) segment():

The semgnt() API function serves two fundamental roles. Its first use is in the creation of new
semaphores.

The second use is identifying an existing semaphore.
Syntax:
Intsemget(key_t key intnum_sems, intsem_flages);

The key argument specifies a system-wide identifier that uniquely identifiers this semaphores.
The key must be nonzero or special symbol IPC_PRIVATE. The IPC_PRIVATE variable tells
sermget that no key is provided and so simply make one up. Since no key exists, there’s no way for
other processes to know about this semaphore. Therefore, it’s a private semaphore for this
particular process. '

The developer can create a single semaphore with an nsems values of one or multiple
semaphore, If we’re using semget to get an existing semaphore, this value can simply be zero.

The num_sems parameter is the number of semaphore required, this is almost always 1.
2) semop():

The sempo() API function provides the means to acquire and release a semaphore or
semaphore array. The basic operations provided by semop are to decrement/increment a
semaphore.

API'S FOR SHARED MEMORY:
The following are the Unix API’s for shared memory,
1) Shmget()
2) Shmat()
3) Shmetl()
4) Shmdt()
The following are the Unix API’s for shared memory,
1} shmget()
This system call is used for getting a shared memory identifier.
Syntax:
O #include<sys/types.h>
#include<sys/ipc.h>
#include<sys/shm.h>
Intshmget(key_t key, size_t size, intshmflg);
The shmget() function returns the shared memory identifier assoiated with key.

A shared memory identifierand associated data structure and shared memory segment of at
least size bytes are created for key if one of the following are true,

i) The key argument is equal to IPC_PRIVATE.

it) The key argument does not already have a shared memory identifier associa}ed with it, and
(shmflg&IPC_CREAT) is true.

O 2) shmat()
Syntax:
#include<sys/types.h>

#include<sys/shm.h>

Void *shmat(intshmid, const void* shmaddr, intshmflg);

Default

L Gl tiait I 21 LA S

.t

#include<sys/ipc.h>
#include<sys/shm.h>
Intshmdt(void* addr);

On execution, the above function returns a value “0° to indicate success, otherwise -1 to
indicate error.

Example:
#include<iostream.h>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
. 6 #include<sys/stat.h>
#include<sys/ipc.h>
#include<sys/shm.h>
int main()
{
Int perms =S_IRWXU | S_IRWXU | S IRWXO;
Inttd = shmget (100, 1024, IPC_CREAT | perms);
If(fd ==-1)
perror(“‘shmget™);
O exit(1);
char* addr = (char*)shmat({d, 0, 0);
if(addr ==(char*)-1)
perror(“shmat™);
exit(1);

strepy(addr, ‘Hello™);

if (shmdt(addr) ==-1)

DS il § el

{protocal, foreign adress,foreign process}

This half-association is referred to as the socket or transport address.

Two communicating processes maintains one socket each i.e., two half-associations, which makes
one full association or connection.

SOCKET ADDRESS STRUCTURES:

A socket address structure is a special structure that stores the connection details of a socket. It
mainly consists of fields like IP address, port number and protocol number and protocol family.

Different protocol suites use different socket addresss structures. The different socket address
structures are,

1) IPv4 socket address structure - “structure sockaddr_in™.
2) IPv6 socket address structure - “structursockaddr_in6”.
3 Generic socket address structure — “structure sockaddr™.
4) New generic socket address structure - “socket _ storage”.

[Pv4 Socket Address Structure:

The 1Pv4 socket structure is also known as internet socket address structure. It is defined in
header file <netinet/in.h> and is named as “sockaddr_in”. The POSIX definition of sockaddr _in is
shown in below.

Structin_addr
{
/*stores a 32-bit IPv4 address */

In_addr_ts_addr;

M*specifies the address family of socket address structure for IPV6 it is AF_INET6*/
Sa_family t sin6_port:
/*32-bit flow label. Its use is still under research®/
Unit32_t sin6_ flowinfo;
/*128-bit IPv6 address as defined in struct in6_adder*/
Struct in6_addr sin6_addr; .
/*32-bit scopelD*/
Unit32 t s id;
}s
Generic socket Address Structure

The functions present in sockent API usually an argument require an argument,wich is a
pointer to a socket address structure.

Any socket function that receives a parameter through pass-by-reference method does not come
to know the type of the parameter. Then how can we declare the variable to receive that parameter.

The developers used tha concept of generic socket address structure, which is defined in
<sys/socket.> header file and is shown below

Structsockaddr
{
/*stores the length of structure it is usually, 8-bit unsigned integer*/
Unit8 t sa_len;
/*stores tha address family.its value usually starts with AF_followed by family name
Example: AF_INET, AF INET etc*/
Sa_family tsa family;
Address belonging to specific protocols/
Char sa data[14]
SOCKET SYSTEM CALLS FOR CONNECTION ORIENTED PROTOCOL:

The system call listen is used by a connection-oriented server to get ready for accepting
connection requests from a client.

Syntax:
#include<sys/types.h>
#include<sys/socket.h>
Intlisten(intsockfd, int backlog);
The first argument sockfd is a socket descriptor, as returned by a socket function call.

The second parameter backliog specifies the number of requests that can be queued by the
system before the server executes the accept system call.

4) accept system call

This system call accept is used by connection-oriented server to set up an actual connection with a
client process.

Syntax:
#include<sys/types.h>
#include<sys/socket.h>
Intaccept(intsock{d, structsockaddr *cli_addr, int *addrlen),
This system call returns a new socket descriptor.
5) connect system call
The system call connect is used by a client to establish a connection with the server.
Syntax;
#include<sys/types.h>
#include<sys/socket.h>
.. This connect(intsock{d, structsockaddr *servaddr, intaddrlen);

This system call is similar to accept. The server address pointed to by seraddr and its length
addlen should be known.

6) write system call

It can be used as either send or write system call to regular messages.

O

Intsocket(int family or domain, int type, int protocol);
“The first parameter famrily or domain specifies the communication protocol used.
The second parameter type specifies the type of socket.
2) bind system call

The system call bind associates an address to a socket descriptor created by socket. It binds a
name to a socket.

Syntax:
#include<sys/types.h>
#include<sys/socket.h>
Intbind(intsockfd, structsockaddr* myaddr, intaddrlen);

The first parameter references the socket. The addrien argument specifies the size of name
structure pointed by the myaddr argument.

The second parameter myaddr specifies a pointer to a predefined address of the socket.
3) sendto system call

since datagram sockets aren’t connected {0 a remote host, guess which piece of information we
need to give before we send a packet.

Syntax:
#include<sys/types.h>
#include<sys/socket.h>

Intsendto(intsockfd, const void *msg, intlen, unsigned int flags, conststructsoakaddr *to, socklen
_t tolen);

4) recvirom system call
This system call’s function is same as the recv system call.
Syntax:
#include<sys/types.h>
#include<sys/socket.h>

Intrecvfrom(intsockfd, void *bufintlen, unsigned int flags, structsockaddr *from int *fromlen);

Teaching Plan

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(AUTONOMOUS)
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
SUBJECT: LINUX PROGRAMMING ACADEMIC YEAR: 2019-20
NAME: M.VLJAYA YEAR/SEM/SECTION: 11 B.TECH/I SEM/A

Teaching Plan

Lecture Teaching Learning Process
No TOPICS
UNIT I
1 File handling utilities Chalké& talk
2 Security by file permissions Chalk& tatk
3 Process utilities, Disk utilities, Power Point Presentation
4 Networking commands, Filters, Power Point Presentation
5 Text processing utilities Backup utilities, Power Point Presentation
6 sed — scripts, operation, addresses, commands. Power Point Presentation

applications

7 Awk-execution, fields and records, Power Point Presentation

8 scripts, operation, patterns, actions, Power Point Presentation

J functions, using system commands in awk Chalké talk

10 REVISION Power Point Presentation
UNIT I

Il Shell programming with Bourne again shell Chalk& talk

(bash): Introduction

12 shell responsibilities. pipes and input Redirection, Roll Play
output redirection .
3 here documents, running a shell script, the shell as a Chalk& talk
programming language
4 shell meta characters Chalk& talk
5 Chalk& talk
file name substitution, shell variables,
6 command substitution substitution, shell variables, Chalk& talk
command substitution
7 shell commands, the environment, quoting. Chalké& talk
8 test command, control structures, Chalké& talk
9 arithmetic in shell, shell script examples Chalké& talk
10 Chalk& talk
interrupt processing. functions.
11 debugging shell scripts Chalk& talk
12 shell scripts Examples Power Point Presentation
13 shell scripts Examples Power Point Presentation
14 REVISION Chalk& talk
UNIT 11
1 Files - File Concept, File types, Chalk& talk
2 File System Structure, file metadata-Inodes, Chalk& talk
3 kernel support for files. system calls for file [/O Chalk& talk
operations- open, create, read, write, close, Iseek, dup?2,
file status information-stat family, file and record Chalk& talk
4 locking- fentl function, file permissions - chmod,
fchmod,
5 file ownership-chown, Ichown. links-soft and hard links Chalk& talk

- symlink, link, unlink.

Directories-Creating, removing and

Chalké& talk

7 changing Directories-mkdir, rmdir, chdir, Chalk& talk
g obtaining current working directory-getcwd, Directory Chalk& talk
contents
9 Scanning Directories-opendir, readdir, Chalké& talk
10 closedir. rewinddir functions. Chalk& talk
UNIT IV
I Process - Process concept, Chalké talk
2 Kerne! support for process, process identification, Chalk& talk
3 Process control - process creation. replacing a process Chalk& talk
image, ’
4 waiting for a process, Power Point Presentation
5 process termination, Power Point Presentation
6 zombie process, Power Point Presentation
7 orphan process. Power Point Presentation
g Signals - [ntroduction to‘signals, Signal generation and Chalk& talk , Think-Pair-
handling Share
. Chalk& talk
Kernel support for signals. Signal function.
10 unreliable signals, reliable signals, Chalk& talk
Chalk& talk
H
kill, raise, alarm
12 pause, abort. sleep functions. Chalké& talk
UNITV
I Inter Process Communication - Introduction to IPC Chalké& talk
2 Chalk& talk

[PC between processes on a single computer system,

3 IPC between processes on different systems. Chalk& talk
4 pies-creation. Chalké& talk
5 IPC between related processes Chalk& talk
6 using unnamed pipes, FIFOs- creation, Chalk& talk
Chalké& talk
7 IPC between unrelated processes using FIFOs(Named
pipes).
q - Chalk& talk
differences between unnamed and named pipes,
9 popen and pclose library functions, Chalk& talk
10 Message Queues APIs for message queues Chalk& tatk
Q 0 Semaphores, APIs for Chalk& talk
semaphores
12 Shared Memory APIs for shared memory Chalk& talk
13 Sockets, Socket address structures Power Point Presentation
14 Socket system calls for connection oriented protocol Power Point Presentation
15 connectionless protocol Power Point Presentation
16 Revision Chalké& talk
Total No of Classes: 62
°
“ L}
7
Course Coordinator CSE-HOD

Assignment Questions

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(Accredited by NAAC & Approved by A.LC.T.E., New Delhi, Permanently Affiliated to JNTU,
Hyderabad)
(Aziz Nagar, C.B.Post, Hyderabad- 500075)
(AUTONOMOUS)

COMPUTER SCIENCE & ENGINEERING

ASSIGNMENT 1
Branch: CSE Year&Sem: [1]-]
SUB: LP Academic Year: 2019-20
@) Faculty Name: M.VIJAYA Marks: 25M
Sno Question Number Marks CO BL PO’s
1 Explain in detail about Linux Operating 5 1 L2 1-5.7,8.10-
system struciure. 12
2 | Explain about file access 5 1 L2 1-5.7.8.10-
permission, 12
3 Define Shell? Responsibilities of Shell? 5 2 L1 1-5.8-12
4 Explain about Control stalements. 5 2 L2 1-5.8-12
5 Explain about standardifo system calls. 5 3 L2 1-3,8.10-
12

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(Aceredited by NAAC & Approved by A.1.C.T.E.. New Delhi. Permanently Affiliated to JNTU.
Hyderabad)
(Aziz Nagar, C.B.Post, Hyderabad- 500075)
{AUTONOMOUS)

COMPUTER SCIENCE & ENGINEERING
ASSIGNMENT I

Branch: CSE Year&Sem: I11-]
SUB: LP Academic Year: 2019-20
Faculty Name: M.VIJIAYA Marks: 25M
Sno - Question Number Marks CO BI PO’s
] What is file attributes, 5 3 L1 1-5,8,10-
12

2 | Explain the following system calls 5 4 L2
with syntax:(i) Iseek() (ii) read() 1-5.8-12
(itt)open () (iv) creat()

3 | What is fork system call? 5 4 L1 1-5,8-12

4 | What are [PC Between processes 5 5 Ll
on a single user system? 1-8.11.12

5 | What issemaphore. Also explain the 5 5 LI 1-8.11.17
APIs associated for semaphore T

-

Mid | & Mid Il

Question Papers

Vidya Jyothi Institute of Technology (Autonomous)

(Accrediled by NAAC & NBA, Approved By A.LC.T.E., New Delhi, Permanently Affiliated to INTU, Hyderabad)
(Aziz Nagar, C.B.Post, Hyderabad -500075)

Il Year B.Tech 1% Semester 1* Mid Examination
Branch: CSE Duration: 90Min
Sub: LINUX PROGRAMMING Marks: 20
Date: 13.8.2019 Session: AN
CourseOutcomes:

2.Able to write shell scripts to solve the problems.(LEVEL 2) '

3.Develop the skills necessary for file system and directory handling.(LEVELS)
4. Learn the concepts of process and signal system calls(LEVEL 2)

5. Implement inter process on mechanisms.(LEVEL 5)

Bloom Levels:

\
\
|
1.Understand and make effective use of linux utilities.(LEVEL 2)
\

Remember I
{ Understand 1I
3 Apply {11
Analyze v
Evaluate V
Create VI
PART-A (3Qx2M =6Marks) Outcomes BL | ™M
ANSWER ALL THE QUESTIONS CO PO
1 Write the syntax with example for the following commands
a)cat b)sort c)chmod COl|1-511,12] V [2
\ ? . - ‘)
2 | Define shell? List different types of shell’ coz | 15812 | 1| 2
3 | What is file? List types of files? 1-5,8,10-
)] CO3 12 1 [2
PART-B (5+5+4= 14 Marks) Outcomes | o | o
‘ O ANSWER ALL THE QUESTIONS co PO
i 43) | Explain the File Handling utilities? o1l s 111" ol s
| : 11,
! | [OR]
| if) | Explain about AWK command with example? co1 | 1-511,12 [11| 5.
5.i) | Explain about responsibilities of shell? co2 | 1-5,8-12 {II| 5
: [OR]
ii) | Explain control structures with example? coz2| 1-58-12 || 5
6.i) | Draw and explain Linux File System Structure? . Co3 1_5’182’1 0- al 4
[OR]
Explain the following system calls with syntax? a)fopen() 1-5,8,10-
if) | b)fclose() c)fseek() d)fflush() cO3 12 nl 4

***VJIT(A)** *

Vidya Jyothi Institute of Technology (Autonomous)

{Accredited by NAAC & NBA, Approved By A1LC.T.E,, New Delhi, Permanently Affiliated to INTU, Hyderabad)
(Aziz Nagar, C.B.Post, Hyderabad -500075)

I Year B.Tech 1% Semester 2™ Mid Examination
Branch: CSE : Duration: 90Min
Sub: LINUX PROGRAMMING Marks: 20
Date:29.10.2019 Session: FN
CourseOutcomes:

1.Understand and make effective use of linux utilities.(LEVEL 2)

2.Able to write shell scripts to solve the problems.(LEVEL 2)

3.Develop the skills necessary for file system and directory handling (LEVELS5)
4. Learn the concepts of process and signal system calls(LEVEL 2)

5. Implement inter process ion mechanisms.(LEVEL 5)

Bloom Levels:

<D Remember I
Understand
Apply 11
Analyze I\
Evaluate \'
Create VI
‘ PART-A (3Qx%2M =6Marks) Outcomes 8L | Marks
| ANSWER ALL THE QUESTIONS cO PO
1 19) Explain the following system calls with syntax. (a)chdir() 1-5,8,10-
| "1 (b) closedir() Cos. 12 I 2
[OR]
. . 1-5,8,10-
1 | i) What is hard link? co3 12 1 5
| () 2) Explain the following system calls for signals a) kill{) b)
" raise() coa | 15812 | I | 2
[OR]
i) What is signal function? cos | 15812 | 1T 5
'3.i) | What is pipe? How to create a pipe? CO5 | 1-8,10-12 | 1I 2
[OR]
i i What is socket? How to create a socket? cos | 1-8,10-12 I 2
i —
| PART-B (4+5+5= 14 Marks) Outcomes BL | Marks
ANSWER ALL THE QUESTIONS CO PO
4.) | What is file? Explain kernel support for files? co3 1'5’182’10' I 4
[OR]
i Write a C program to implement cp command by using system 1-5,8,10-
calls? CQO3 12 I 4

Define zombie process. Write a program to illustrate the

5.0) . -
zombie process concept. co4 | 15812 | 1
[OR]
i) What is signal? Differentiate between reliable and unreliable
signals co4 | 1-58-12 | I
6.) Describe various APIs of Message queues that are used for
/| inter process communication. cos | 1-8,10-12 | I
[OR]
... | Describe Socket system calls used for connectionless protocol
it) . CO5
with syntax and usage. 1-8,10-12 | I

VJI'I‘(A)

Unit Wise Questions

LINUX PROGRAMMING
Unit:1

Long Answers Type Questions : (5 questions)
1. a)Explain in detail about Linux Operating system structure.
b) Explain file handling utilities?
2. Write in detail about five Text Processing Utilities.
3. Explain about process utilities?
4. a) Explain various patterns and actions in awk.
b) Write an awk script to perform simple arithmetic operations
5. Explain the commands in sed.

Short Answers Type Questions : (20 qsns)
1. What is Linux?
2. What is kernel and explain its functions?
3. Explain security by file permissions?
4. Explain any three process utilities?
5. Write the syntax with example for the following commands
a) chmod b) tr c) tar
6. Explain about any three filters? '
7. Explain disk utilities?
8. Write differences between sed and awk?
9, Explain the networking commands?
10. Explain about SED Addresses with example?
11. Explain about AWK command and patterns in AWK?
12. Write the syntax with example for the following commands
a) grep b) sort c) telnet
13. Explain about head and tail command?
14, Write short notes on SED command?
15. Explain about comparing commands? (comm, diff, cmp)
16. Explain backup utilities (far, cpio)?
17. Differentiate between a process, a program and a job?
18. Write a short-note on buffers in AWK?
19. What is the difference between append and insert command in SED?
20. Define filter?

Unit : 1T
Long Answers Type Questions : (5 questions)
Define Shell? Responsibilities of Shell?
Write about the types of shells? Explain the shell commands?
write about control statements with syntaxes?
Write a shell seript to count the specified number of lines in a text file without using we
command?
5. a)With an example script explain the differences between ‘while’ and ‘until’ statements.
b) List and explain the various meta characters available in shell programming.

el S S

Short Answers Type Questions : (20 gsns)
1. What is shell?
2. Types of shells?
3. Write short notes on I/O redirection operators? .

o2

4, Define the here document with example?

5. Write about Responsibilities of Shell?

6. Write a shell script for arithmetic operations using case statement?
7. Write a shell script to find the reverse of the number?

8. Describe about various shell variables?

9. What is Test Command?

10. Write a shell script to find the factorial of a given number?

11. Define function? Write a list of predefined functions?

12. Write about the types of shells? and Meta characters in shell?

13. Write a shell script to find file or directory?

14, Describe about control statements with syntaxes?

15. Explain various Meta characters in shell with an example script?
16. Write a shell script to‘illustrate cat coimand in Linux?

17. Explain how debugging can be done in a shell script?

18. What is command substitutiori?”

19. Write a shell script to find and delete all file with'the word “Unix"?
20, Write a short notes on interrupt processing ?

Unit : ITT
Long Answers Type Questions : (5 questions)

[

Explain about file system structure in Linux,
2. Explaln the folIowmg system calls with syntax:
(1)lseek() (ii) read() (111)0pen () (1v) creat()
Explam about hard and symbolic links with examples
Discuss the data structures that support, the linux files in detail?
a)Explam about scanning directories functions,
b)Write a ¢ program to implément Is command by using system calls?

bl

Short Answers Type Questions : (20 gsns)

1. List the standard 1/0 functions?
2. Define file descriptor.
3. What is 1—n0de‘7
3. leference between stream pointer and file descriptor?
4. What is system call?
5. List the scanning directories functions?
6. List the system calls for Directories ?
7. What is Symbolic link?
8. What is hard link?
9. Define file? Write the types of files?
10. Write a program to implement ¢cp command usmg system call?
11. Write a program to implement mv command using system calls?
12, What are file attributes?
13. write a program to implement cat command using system calls?
14. What is the command used for changing the directory?
15. what is meant by reference counter?
16. Explain the following system calls with syntax;
@mkdir) (bymdir() |
17. Explain the following system calls with syntax. (a)chdir() (b) closedir()
18. What is links with examples?

ey

19. Explain in detail about various files.
20. Write a program to explain link system calI‘

Long Answers Type Questions : (5 questions)

1. What is meant by Process? Explain the following with example:

(&) Process Creation

(b) Process Termination

2. What is an orphan process? Write a program to illustrate orphan process.
3. What is an Zombie process? Write a program to illustrate Zombie process.
4. a) Difference between fork() and viork()?

b)Difference between reliable and unreliable signals

5. Explain the below system calls with the help of syntax and examples:

a) kill b) raise c¢) alarm d) pause e) abort

Short Answers Type Questions : (20 gsns)

1. What is meant by Process?
2. What is Process Creation?
3. What is Process Termination?
4, Differentiate between real IDs and effective IDs?
5. What is an orphan process?
6. What is an Zombie process?
7. Differentiate between thread and process?
8. Explain the following system calls for signals
a) killQ) b) raise()
9. Explain the following system calls for signals
¢) alarm() d}) abort()
10. Explain about the kernel support for signals.
11, What is signal handler? explain with an example.
12. What are the signals that are not ignored or blocked?
13. What is need of exec() system call? Write syntax?
14. Differentiate between fork() and vfork().
15. Explain about the kernel support for processes.
16. What is signal function?
17. What are process identifiers? Mention the commands for getting different IDs
of calling process.
18. Write a program that demonstrates the use of exit().
19. difference between wait() and waitpid()?
20, difference between signal and interrupt?

Unit: V
Long Answers Type Questions : (5 questions)

1. Define unnamed pipe? How do we create unnamed pipe? Explain the limitations of unnamed
pipe.

2 Define named pipe? How do we create named pipe?Write ¢ programs that illustrate
communication between two unrelated processes using named pipe?

3. Describe various APIs of Shared memory that are used for inter process communication.

4. Describe various APIs of Message queues that are used for inter process communication.

5. a) Explain briefly about the following socket APIs with clear syntax:

i) socket() if) bind() iii} listen()

b) Describe Socket system calls used for connectionless protocol with syntax and usage.

Short Answers Type Questions : (20 gsns)

1. What is IPC?

2. What are IPC Between processes on a single user system?

3. What is socket? How to create a socket?

4. What is pipe? How to create a pipe?

5. What is shared memory?

6. What is FIFO explain with example?

7. Compare the IPC mechanisms?

8. Explain with example the Kernel Support for message queues?
9. How to create message queues?

10. What is msgsend and msgrecv system calls?

11.List the API for Shared memory?

12. Explain with example the Kernel Support for semaphore?

13. Difference between connection oriented and connection less protocols?
'3 14. Write the syntax for semop(), semget(), sementl() system calls?
' 15. How to control semaphore?

16. What is semaphore? Types of semaphore?

17. what are the connection less socket methods ?

18. What is generic socket address structure?

19, Differentiate between pipe() and FIFO.

20. What is IPv4 and IPv6 socket address structure?

» Minutes of Course
Review Meeting

58)

Meeting 1
Date: 8/7/2019

Details of Meeting No — 1

Date of Meeting 8/7/2019

. ML.VIJAYA
. K.SAMATHA

1
2
3. Dr.K. RANGA RAO
4. P.LAKSHMI PRIYA

Details Points discussed in the meeting:

Member’s Present

 Preparation of Unit wise questions and give assignment
to students

* Teaching Learning Practices

» Status of Syllabus coverage of Mid I, |

Signatures 1. M

)
%

‘/\

%X

Course Coordinator CSE-HOD

@)

Meeting 2

Date: 14/10/2019

Details of Meeting No — 2

Date of Meeting 14/10/2019

Member’s Present 1. ML.VIJAYA
2. KKSAMATHA
3. Dr.K. RANGA RAQ
4. P.LAKSHMI PRIYA
Details Discussion on

e Preparation of unit wise questions and giving

assignment

Status of Syllabus coverage

P

Signat L. A

ignatures W
3. WW
L%

Course Coordinator

CSE-

4

Lecture Notes

UNIT-1

Linux is a free and open source software operating system that can perform all the tasks that any
current popular 0.5 can. The defining component of a Linux distribution is its kernel, which is the
heart of an operating system. It controls the hardware, CPU, memory, hard disk, network card etc.

The shell acts as an interface which enables the communication between user and kernel. It
interprets the inputs-of the user as commands and passes them to the kernel.

Linux-kernef architecture:
High level architecture:

ot i e oot A i o i i 7 S 1

Kernel
. O8 Services
. User Applications

Kemnel : It is the heart of the OS. It is the main program in the UNIX System. It controls Hardware,
Software, CPU, memory, hard disk, network card etc.

Shell : It is the interface between user and the kernel. It interprets your commands and pass them to
kernel.

Application : Provides useful functions for the OS.

Welcome
(Ctrl-d)-to save the content entered after the command.
To display the content -
$oat filel
2. M-
In Uriix file system, to remove files we use this command.
Syntax: $rm. [-option] <filename>)
Options:
4 : (force) forcibly removes the file though it has all r, w, X permissions.
-r : (recursive removal) removes all files and empty directories. Even if the directory
has files, it removes the files first and then removes the directory.
-i : (interactive removal) remove command with interactive flag asks the user before
removing the file or directory. .
Example; $rm f filet

File naming and renaming

1. move—. . . 7 .
Syntax: $mv {-option] [file/dir] [newfile/newdir]
Options:

«i ; {interactive flag) The interactive flag with mv command is useful to warn the user
that the destination file already exists. :

-f : (force) this is uséd to forcibly ov L emrite%}
the already existed file.

Example: $mv -i file1 file2

Editing files

In Unix file system ,we edit a file, append or ,updatt? the existing data by using vi editor.
Syntax: $vi- <filename> |

Example: $vi filet

Esc + i — insert mode(to enter the contents)

Esc : wq -— to save the contents -

File access permissions

Unix operating system supports 3 kinds of permissions. .
1read 2write 3.execute ,
read : read permissions allows to read the content of a file
write ; write permissions allows to edit / move/ delete a file.

execute : execute permissions allows to execute the program files and shell script files for
different sets of data. .

2.who -
This command is used to know who is currently logged on to the system.
Syntax : $who [-option]
Options :
-H : displays the header of the column.
-U ; provides a detailed list.

Example: $who -H

3w-—
w command is same as the who command except that this gives detailed output of user
6 activities:and many details of the system..
Syntax: $w [-options]
Options:
-H, W)
4.Xill -
It kills the process id.
Syntax: $kill signal PID PID
5.pkill — '

N [N

it kills the process.

Syntax: $Rill s:ignal process process

o Disk utilities

1. du- -
It displays the disk space used by the specified file/directory. And it displays disk usage
of the current directory.
Syntax: $du [-option)
Options:
-a: (all) count of all files, not just for directory.
-b: (byte) it prints the size in bytes.
-t; {total) it prints the grand total.
-h: (human readable} it prints the size in human readable format.

2. df-

This command is used to find out the empty disk space.
Syntax: $df

LR 3
- TR A
S o OF, fr;l £

5. tr: (translating characters) used for franslating letters from character set to other.
Syntax: $ir [-option] string1 string2
This command replaces the characters specified in string1 with characters specified in
string2. These strings are enclosed in double quotes. The translation is done by replacing
the first character in string1 with first character in string2.
Options:
-d: this option is used to delete from text line that are matching during translation
-s: if same characters are occurring ,this is used to compress the char in the output.
-c: this option is used to display lowercase letters to uppercase.
Examples: .
$tr -d “legtwy”
Yesterday | dared to struggle today | dare to win
Srda | dard o srugg oda | dar o in

$tr -s “ria” “egr’
Yesterday | dared to struggle today | dare to win
Yesteedry | dreed to steuggle todry | dreed to wgn.

$tr -c “abc” “ABC" .
Stu aokabc ode
Siu Aok ABC ode

Filters

In Unix, a filter is ahy command that has the following features.

1)receives its input from standard input .

2)manipulates input _
3)sends the result to the standard output

Examples: .
more, cat, comm, cut, cmp, diff , head , tail , paste , sort, tr, uniq, we.

1. more—
it is a command to view the contents of a text file one screen at a time.
Syntax: $more [-option] <filename>
2. sort—)
It sorts the contents of a file i.e. arranges the content in a particular sequence using
ASCIl character code values.
It is also responsible for merging and comparison.
Syntax: $sort [-option] <filename>
Options:
-c: It checks the given file that is already sorted.
-n: It sorts on numeric values.
Example:

o,
1B %
- -

- vE

02 1
Yoy)

7. unig-
This command displays unique lines in a file. It displays only single copy of each line on
to the standard output.
Syntax: $uniq [-option] <filename>
Options:
-u: this option compresses the output of duplicated lines and display the only unique
lines in a file.
-d: it is a complement of -u option. It displays single copy of duplicated lines.
-c: this option counts the occurrence of each line.

Comparing commands
There are 3 commands that are used to compare the contents of two files.
Temp 2)comm - 3)diff _— '

*

1.cmp—~, ., _

~ 1

This comrhand is used to perform comparison of 2 files byte by byte. Its used to determine
whether the file is identical/not.

Syntax: $cmp. [-option] filename1 filename2
Options: .
-I: this option d}splays the list of all differences present in a file byte by byte.
-s:-this is-known as suppress list option. This doesn't display any output.
2.comm-~- * V¥ L
This command prints the lines that are common in 2 files as input.

Fs

Syntax: $comm [-option] filename1 filename2

T ol L "

3.diff — -

This command prints the difference between 2 files by performing comparison line by line
and by comparing first file with second file. When a difference is marked, the first file is altered
inorder to match it with the second file. |

Syntax: $diff [-option] ﬁ{gqarqe;l_ flename2 ,

Networking commands

The commands which we will use for communication between more than one system for sharing
resources or any other issue are known as networking commands.

These are of 5 types.
telnet 2)finger 3)ftp 4)arp Sirlogin
1. telnet — ;

k|

2. tar- .
This is used to save and restore the files and directories to/from different types of media
like tape or floppy disk. We can mount a directory or format a disk to which we want to
backup data without creating a file system on it.
Syntax: $tar -cvf tarfileftapedevice directory

sed command

This is the most powerful filter. It stands for stream editor.editor. A stream editor is used to
perform basic text transformations on an input stream (a file or input from a pipeline). While in

_ some ways similar to an editor which permits scripted edits (such as ed), sed works by making
only one pass over the input(s), and is consequently more efficient. But it is sed's ability to filter
text in a pipeline which particularly distinguishes it from other types of editors.

It reads standard input process using a file called sed script and writes the resuit to the standard
output.

Syntax: $sed [-option] ‘address.action’ file(s)
Options:
-e: It is a default option.!t indicates that the script is on the command line.
-+ It indicates that the script is in a file which immediately follows this option.
-n: It sup_présses the a,utomatiti c":utput:"i’.e: it will not display the contents of pattern space.

Example: $sed -f myscript.sed f.txt

i p

sed script

A sed script is a file that contains list of instructions to be applied to each fine in an input file. If
there is only one instruction it can be included as command line.

If there are more instructions, that need to be executed frequently, they should be saved
in a separate file .Each instruction in a sed script consists of an address and a command
separated by a compliment operator.

of

sed addresses ,

A sed address is an instruction which determines ,the fines in the input file that are to be
processed or skipped by the command in the instructions.

Under this there are four:

1. single address

2. set of line addresses

3. range address .
4. nested address -

single address:

13

awk is a more utility. The operations of awk is similar to sed utility. It reads a standard input line
by line and takes an action on a part of entire line. The actions are specified in an awk script
that consists of list of instructions.

Each instruction contains a pattern and its associated action.

Syntax: awk [-option] awk_script file(s)

awk execution

awk script is a file containing a list of instructions to be applied to each line in a input file.

Syntax: $awk ‘pattern{action} filename

Example: $awk ‘/program/{print}’ f1.txt
Fields and records

A file is viewed as collection of fields and records by-the awk utility.A field is a data unit that
gives some data. Each line in a file is a record, which is a collection of several fields. However
the record contains related data.

A file organized into records is called a data file.

Scripts

These are divided into 3 parts: -
1. initialization

2. body
3. end of job

BEGIN {action}

patterni {aéfibnﬂ
pattern2 {action2}

iaatternN {actionN}

END ({action}

1. Initialization —
This part defines instruction for initializing variables , creating report headings , sed
system variables etc. It is identified with a token BEGIN and all the instructions are
enclosed with curly braces. .
This partis processed only once before the awk reads the first line from the input file.
2. Body -
It consists of one or more instructions for processing the data in a file. Each instruction
consists of a pattern associated with an action that will be taken when the pattern is

matched.

15

. substring() —
The substring() returns substring from the given string.
Syntax: substr({ string , starting_index) or
substr(string , starting_index , length)
. split() —
This divides the string into 2 substrings using a field separator.
Syntax: split (str ,array)
split (str ,array field_separator)
. sub() - .
The sub() substitutes one string for another string that matches your regular expression.
it returns 1 if the string was substituted and returns 0 if it failed.
Syntax: sub (regular_exp , with_string , input_string)
. gsub() =
This is same as sub() except that gsub() substitutes all the occurrences of the matching
string with another string.
Syntax: gsub(regular_exp ,with_string , input_string)

i

s :\fo_a

et
-5
LEY

17

4) Bourne Again Shell (BASH):-

The popularity of sh motivated programmers to develop a shell that was compatible with it, but
with several enhancements. Linux systems still offer the sh shell, but "bash” - the "Bourne-
again Shell," based on sh -- has become the new default standard. One attractive feature of
bash is its ability to run sh shell scripts unchanged. Shell scripts are complex sets of commands
that automate programming and maintenance chores; being able to reuse these scripts saves
programmers time. Conveniences not present with the original Bourne shell include command
completion and a command history.

5) The T C Shell

Tesh fixed problems in csh and added command completion, in which the shell makes educated
"guesses” as you type, based on your system's directory structure and files. Tcsh does not run
bash scripts, as the two have substantial differences.

Shell script;- :

The usage of more number of commands in one file is called Shell script.
*Shell responsibilities

19

When the shell encounters a meta character ™, then it replaces the list of files from the current directory
that matches the pattern.

Command substitution:-

The shell executes the command surrounded by a backward quotes.
Syntax:- ‘command’

Eg:- $echo enter the date is "date’

Sequences:-

A shell executes a series of commands in a sequence from left to right and the sequence of commands
are separated by a semicolon.

Eg:- $cat > file1 ; Is ; pwd

Background processing:- .

When a user gives a command or a series of commands followed by a"&" symboland a
"&metacharacter”, a subshell is created to execute the commands in a background which will run
simultaneously as parent shell and act as the background process.

Eg:- $fact.c & date& .

Subshells:-
A shell consists of a parent shell and a child shell. A current shell creates a new shell to perform a
specific task.

Shell has two data areas
Environmental area
Local variable area
3 P | E) .
Varigbles~ - . ;
There are two types of shell vanab[es -
Loca! variables
Environmental variables

The data in these variables is stored as string.
A child shell inherits a copy of the parent shell which is called as the environmental variables but not
local variable.

The useful information transmitted by using environmental variable.

Grouping commands:-)
Shell allows group of commands separated by using semicolon by placing between the parenthesis.

The group of commands is executed by using sub shell or child shell.
Eg:- $(who;pwd;date;ls)

Plges -

Piping is a process of combining 2 or more commands using a pipe operator("").
Eg:-$who | Is
The output from command on the left will be the input to the other command.

tnd

Quotes
There are mainly four types of quotes characters used in Linux . These are

1. " (double quote):
The double quote { "quote") protects everything enclosed between two double quote marks except $.
. " and \.Use the double quotes when you want only variables and command substitution.

2. " (single quote):
The single quote { 'quote') protects everyihing enclosed between twao single quote marks. It is used (o
turn off the special meaning of all characters.

3.7 (back quote):

Backtick is not a quotation sign. it has a very special meaning. Everything you type between backticks is
evaluated (executed) by the shell before the main command (like chown in your examples). and the owput
ol that execution is used by that command. just as if vou'd type thal output at that place m the command
line.

4.\ (back slash): .
The backslash (\) alters the special meaning of the "and " i.e. it will escape or cancel the special meaning
ol the next character.

Control Structures

The control flow commands alter the order of execution of commands within a shell seript. They include
the if...then, for...in, while, until, and case statements. In addition, the break and continue statements
work in conjunction with the control flow structures to alter the order of execution of commands within a
script.

1. If.. then.. fi

The if statement tests the result of a command and then conditionally executes a group of statements.
It is a nested conditional flow control.

Programs
1. Write a shell script using two arguments.
Ans.
$ vifilel
Echo “My First number is $17
Echo “My Second number is $2”
Echo “total number of arguments are $#”

Power Point
Presentation

L SR 1 }k,(_,)

18 w T
':4?&"‘ BT e

S S w
o — ‘_*‘ INDEX‘ o Daadig
=5 MNo, Topics
1 wWorking with Bourne shall
2. Shell responsibilities
3, Pipes, rediroction
<, Hero documents N
5. Shell meta charactoers
S Shell variables
7. Shell commands
8 Environment
2. controt structures -
10 Shell script examplas
2
e N L e
MY hat™ s Slhiell?
Ir's aacts aan inmlertface betvweeen the user ancad OS (kermal), 1 0s
kKnoswr as " comnmuanmmand interpretaert”
' W Trie oty 1
shhell finds coad Cusr/loind.
shell rurmns crral.
»ou receive thhe output
[TSERDEe
r 1 1
TN | | < | e I
I e | 1 e —ba ||
e

Program Execution

Variable and Filename Substitution
1I/O Redirection

Pipeline Hookup

Environment Control

Interpreted Programming L.anguage

1
2
3
<.
5
S

Shell respon.?.lbllltnes

1

0. onenvarianies

7. Shell commands
8 .Environment
9. control structures

10. Shell script examples

I ST T Faead A o "map e
3 i S e LR A A AR L -

e e

AR

- S hell metacharacter‘s

The shell consists of large mo. of motacharactors .
These characters plays vital role imn Unix

Prograrmmming.
Tvpes of moatacharacters:

1 .File substitution

2.1/ rediraction
B.Procaess axacution
A.Oucting mMmetacharacters
5. Positional parameters
S. Special characters

o, _g:"t« i

= They are.initialized when
the shell script starts and
normally capitalized to

Enviromnmeont
Variablos

distinguish them fronm user- P HOME
defiried variables in scripts SPATH
= To display all variables in
the local sheall and their SPsS1
values, type the et spoz
corruantand SSHET.L
= The vunsaet command
R ~ SO
removes the variable from
the current shell and sub S H
shell
S5

control structures

1
l control structurcs

L.ooping !

1
Conditional
statements ! statements

" B IR ey o D ﬁﬁ“ S H i s
Env:ronwment‘:»_Varl 41 X -iéé,g}i“ﬁ*&“

EX

%

Deosacriptican

Home directory

List af diractorias to
=aarch for
commuancds

Command prarmpt
Sacondary prompt
Current tagin shell

Name of tha shall
script

No of parametars
passad

Process |D of the
sheall script

Unconditiaonal i
statements |

- H

S

‘

[eisy

Misimamiaiied
e

Kt 3

ysiem

S

L
=i M/ Boot Rkl -
‘:«;;é:;mﬁ'g’% -
fete d
SdifNote ! |
/b
/madia

i
ek

PP
vt

“socket

50

User Blhary Flles

Boot Loader Files *

Device Files

Configuration files

Home Directories

System Ubraries

Mount point for removable media
dMount pong for temporary file systems
Cptonal Add-on applications
System Binaries sk
Service Data ?
KTgﬁrﬁpogawﬁiés ®
UsdsPrograms ¢
\fgﬁ‘aﬁiifﬁl_{s§xg

A s ¥l

e

= Socket - create an endpoint for comrmunication

SYNOPSIS

#include <sys/types.h> /* See NOTES */

#include <sys/socker.h>

int socker(int domain, int type, int protocol);

DESCRIPTION

= socket() creates an endpoint for communication and

recurns a file descriptor that refers to that endpoint. The

file descriptor returned by a successful call will be the

lowest-numbered file descr

the process,

iptor not currently open for

(D

Semester End
Question Papers

Vldya Jyethl Instltute ef Technology (Autonomous“‘ff:- o

(Accredited by NAAC & NBA, Approved By AL C.1.E, New Delhi, Permanently Affi liated to JNTU, Hyderabad) .
(Aziz. Nagar, C.B.Post, Hyderabad -500075) ’

R | Subject-code: AISSiZ

111 B. Tech I SEM- RIIGULAR*I}XAMINATION NOVEMBER 2017 -

P g
¥
3

M hd
a o oo Sy ot ORI, P—— g panimey - can i ?." JrR, erent o -

LINUX PROGRAMMING
(COMMON TO CSE & IT)
" Time: 3hrs Max.Marks:75
Note: Tliis question paper contains two PARLS, EARTA and>@CARTB. i
PART A is compulsory which carries 25 marks. jflnsweraﬂ' “qisestions. ') »
Q’,M{ﬂ’ @ consists of 5 Units. Answer any one fullquestion. from each unit t i
f PART - A © R
§- ANSWER ALL THE QUESTIONS 25 M
i 1. What are the advantages of Linux operating system? 2M X
; N ingwhich, character is used to search a patiern in the begmmng of caqh Ime usmg* grep i
' command R N
b 3, List shell responsibilities in Linux. M .
11 . . 4 Describeabout various shell variables. 3M:
g f@ 5. Define file descriptor.) 2M: s
B b 6. Explain the meaning of . and .. Twith respect to directoiy. " 3M
"y 7. Define Zombie Process. © M
5 8. Differentiaie between thread and; process M
i1 9. Define semaphore. 2M °
*1 10. Draw the structure of message queue for stonng 3:messages in message queues. IM
" PART-B . . . -
' ANSWER ALL THE QUESTIONS SX10M=50M .-
. .i 11.i) (2) Create a file with-name employee whxch stores ename, epid, designation, salary. Write a 4
4l command to display the details eéname, epid, and salary whose demgnatlon is s
V) “Manager”,
(b) Discuss file attributes? Explain how to change basic file permissions with examples.
p [OR] . .
N 1 3) WiHtESHoTt Tiotes o tHe O oWing Utilities s smisainin S isinvismsssmommmmsiaiiod b 5 e sis mtes,
Ty (A)cat B)ep (Cywe (D)rm - v
N 12.i) (a) Write about the types of shells? Explairi the shell commands. .
; (b) Wiite a shell script to print the Fibonacel series below SO which is given as: L w
4 ‘6 0112358132134, ‘ 4
- | [OR] !
) il (a) Explain Responsibilities’of:Shell. s
1 (b) Explain the structure of iE:élse and:case.statements. of a shell program with N
i suitable-example, .’
) 13. 1), Write about File and Directory niainfenance. system calls? (Give syntax & examples) ;Y
[OR] -
"% . if) (a) Write a C-progtam for ¢ we?.command using system calls or-dibrary functions.. L , 3
R (b) Write short notes.on Inode. g ey
7 14.1) (a) Explain the Kernel support for Process with a neat diagram.? ’
: (b) What is an orphan process? Write a program to illustrate orphan process? R
‘ OR -t
TARE _ii)(a) Differentiate between wail(,) and wa1tp1d£) x ' :
iy (b) Explam the function of ¢ SIGCHLD ‘and’ SIGQUIT SIgnals T TR PN B B
g 15.1)) Define FIFOs? How they are, different from pipes? Give an example '1pp11cat10n where FIFO
i , can be used. “
K b) Explain IPv4 and IPv6 socke]: address strugture. : L
Ly {OR] e
. ii) (a)Explain similarities'and dlss1m11ar1tles bétween the semaphore did shared
; 1 memory-IPC Meéchnists.’ 2 §
o (b) What'is socket'? Explain various socket system «calls used for TCP protocol Kk
& #**VJIT (A) i

o

& ;}J’a;

Vidya Jyothi Institute of Technology (Autonomous)

(Accredited by NAAC & NBA, Approved By ALC.T.E., New Delhi, Permanently, Affiliated to JNTU, Hyderabad)

(Aziz Nagar, C.B.Post, Hyderabad -500075) Subject code: A15512
III B. Tech I SEM REGULAR EXAMINATION - NOVEMBER 2018
LINUX PROGRAMMING
{(COMMON TO CSE &IT)
Time: 3hrs Max.Marks:75

Note: This question paper contains two PARIS A and B.
PART A is compulsory which carries 25 marks. Answer all. quzzsttons
PART B carries 5 questions. Answer afl the questions.

PART - A
ANSWER ALL THE QUESTIONS 25M
1. List text processing Linux utilities, 2M
2. What is the purpose of sed. Give an example? M
3. What is the significance of here documents? 2M
4. Write a shell script to find the reverse of a given number. IM
5. What is rewinddir function? 2M
(). 6. Whatis File? Explain various file attributes. 3M
= 7. What is fork() function? Give an example. 2M
8. What is the use of alarm function? 3M
9. What is FIFO? Why FIFO’s are called as named pipes? 2M
10. Explain about shmentl () function, 3M
PART-B
ANSWER ALL THE QUESTIONS 5X10M=50M

11.i) a) Discuss backup utilities with examples?
b) What is the purpose of awk? Explain with examples.
OR
i) a) Write an awk script that reads a file of which each line has 5 fields — ID, NAME,
MARKSI, MARKS2, MARKS3 and finds out the average for each student. Print
out the average marks with appropriate messages.
b) Explain various file handling utilities with suitable examples.
12.i) a) List and explain various quoting? Explain with examples.
b) Write a shell script to find reverse of a given number?

L g S e s

- OR
b ii) a) Explain test command with suitable example?
b) List and explain interrupt processing functions.
13. i) a) Explain in detail about the file I/O operations.
b) Differentiate system calls and library functions.
OR
ii) a) Explain the file system structure in Linux system.
b) Give syntaxes of commands mkdir, rmdir, chdir and explain,
14. 1) a) Explain the signal concept with an example.
b) What is a zombie process? Explain with an example.
OR
ii) a) What is a orphan process? Write a program to illustrate orphan process?
b) What are reliable and unreliable signals? Explain.
15. 1) a) Compare the IPC provided by shared memory and message queue.
b) Explain bind(}, listen(), accepi() methods of TCP socket.
OR
ify a) What are pipes? Explain how pipes are created and used in IPC with examples.
b) What is Socket? Explain socket system calls for connection oriented protocol.

w**VJIT(A)xww

e

e

¥ § T ORI I & SR ATV b ; i

Extra Topics Delivered

—_

Extra Topics Delivered:

».‘,.;.i‘?,g

1 Communication utilities

3 Socket Programming

1. The ping Utility The ping command sends an echo request to a host available on the network, Using
this command, you can check if your remote host is responding well or not. The ping command is useful
for the following - Tracking and isolating hardware and software problems. Determining the status of

the network and various foreign hosts. Testing, measuring, and managing networks. Syntax Following is
the simple

syntax to use the ping command - Sping hosthame or ip-address

2. Sexver side C/C++ program to demonstrate Socket programming

#include <unistd.h>
#include <stdio.h>
#include <sys/socket.h>
#include <stdlib.h>
#include <netinet/in.h>
#include <string.h>
#define PORT 8080
int main(int argc, char const *argvi])
{
int server fd, new_socket, valread;
struct sockaddr in address;
int opt = 1;
int addrlen = sizeof(address):
char buffer[1024} = {0}
char *hello = "Hello from server";

// Creating socket file descriptor
if ((server_fd = socket (AF_INET, SOCK_STREAM, 0}) == 0)
{
perror{"socket failed");
exit(EXIT_FAILURE):
I3

// Forcefully attaching socket to the port 8080

if (setsockopt (server fd, S0L_SOCKET, 50 REUSEADDR | SO REUSEPORT,
&opt, sizeof(opt)})

{

perror {"setsockopt™):

exit (EXIT FAILURE);
}
address.sin_family = AF INET;
address.sin _addr.s_addr = INADDR ANY;
address.sin_port = htons({ PORT);:

// Forcefully attaching socket to the port 8080
if (bind(server fd, (struct sockaddr *)s&address,
sizeof (address}) <0}
{
perror{"bind failed"):
exit(EXIT_FAILURE);
}
if (listen(server fd, 3) < 0)
{
perror("listen”);
exit (EXIT FAILORE};

} b
if {{new_socket = accept {server_ fd, (struct sockaddr *)saddress,
(socklén t*)&addrlen))<0)

{
perror{“accept™);
exit (EXI.T_E‘AILURE) ;
}
valread = read{ new socket , buffer, 1024);
printf ("%s\n",buffer):
send (new_socket , hello , strlent{hello) , 0);
printf(®Hello message sent\n");
return G¢;

Client side C/C++ program to demonstrate Socket programming
$include <stdio.h>

finclude <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <string.h>

#define PORT B08&0

intmain(int argc, char const *argv[])
{
int sock = 0, valread;
struct sockaddr_in serv_ addr;
char *hello = "Hello from client";
char buffer[1024] = {0};
if {(sock = socket (AF INET, SOCK STREAM, 0)) < 0)
{
printf{"\n Socket creation error \n"):
return -1;

serv_addr,.sin_family = AF INET;
serv_addr.sin port = htons(PORT);

// Convert IPv4 and IPv6 addresses from text to binary form
if(inet_pton(AF_INET, "127.0.0.1", &serv_addr.sin_addr) <=0)
{
printf("\nInvalid address/ Address not supported \n"}:
return -1;

if (connect (sock, (struct sockaddr *}&serv_addr, sizeof(serv_addr)}) < 0)

{
printf("\nConnection Failed \n"};
return -1;

}

send(sock , hello , strlenthello) , 0);:
printf("Hello message sent\n"):

valread = read(sock , buffer, 1024);
printf("$s\n", buffer }:

return 0: '

Innovation in Teaching and
Learning

% Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.LC.T.E., New Delhi) permanently affliated JINTUH
(Aziz Nagar, C.B.Post, Hyderabad -500075)
(AUTONOMOUS)

Innovative /Student Centric Teaching Method Form

Innovation in Teaching Learning: Role Play
Subject: Linux Programming

Name of the Faculty: M.VIJAYA

Topics Shell Responsibilities
Class/ Section: 1 B.Tech I-Sem CSE-A

Teaching is an art and science. Teaching is a process of imparting knowledge and skills. It
is a systematic process based on some educational objectives to communicate.

Interactive learning is a hands-on, real-world approach to education. ‘Interactive learning
actively engages the students in wrestling with the material. It reinvigorates the classroom for
both students and faculty. Lectures are changed into discussions, and students and teachers
become partners in the journey of knowledge acquisition.'

Role-playing is the changing of one's behaviour to assume a role. either unconsciously to fill a
social role, or consciously to act out an adopted role.

» Torefer 1o the playing of roles generally such as in a theatre. or educational setting:
» To refer to taking a role of an existing character or person and acting it out with a
partner taking someone else’s role. often involving dilferent senres of praclice

Shell responsibilities

Built in commands:-

A shell contains several present commands upon giving a command $ls,

Wild cards or File name substitution:-

A wild card is also known as the file name substitution. A shell offers a wild card facility that helps in
selecting files from a file system, that satisfies the specific pattern. Eg:- $ls -] f-name*

Command substitution:-

The shell executes the command surrounded by a backward quotes. Syntax:- ‘command’
Sequences:-

A shell executes a series of commands in a sequence from left to right and the sequence of commands
are separated by a semicolon. Eg:- $cat > filel ; Is ; pwd

Background processing;-

When a user gives a command or a series of commands followed by a "&" symbol and a
“&metacharacter”,-a subshell is created to execute the commands in a background which will run
simultaneously as parent shell and act as the background process, Eg:- $fact.c & date&
Subshells:-

A shell consists of a parent shell and a child shell. A current shell creates a new shell to perform a
specific task.

Variables:-

There are two types of shell variables:- Local variables, Environmental variables

Grouping commands:-

Shell allows group of commands separated by using semicolon by placing between the parenthesis.
Eg:- $(who;pwd;date;|s)

Pipes:-

Piping is a process of combining 2 or more commands using a pipe operator("|").

Eg:- $who | Is

Redirection:-

Redirection is a process in which we use a file in place of one of the standard streams.

B vaananratig Tk oy e o
B Es 3“ B N

=

Ak
L

OUTCOME:

+ Develops communication and language skills
» Develops social skills as students collaborate with others
» Encourages students to express their ideas and {eelings in a relaxed environment

k!
Instructor CSE-HODT
M.Vijaya

Vidya Jyothi Institute of Technology

(Accredited by NAAC & NBA , Approved By A.I.C.T.E., New Delhi) permanently affliated JNTUH
(Aziz Nagar, C,B.Post, Hyderabad -500075)
(AUTONOMOUS)

Innovation in Teaching Learning: Think-Pair-Share
Subject: LINUX PROGRAMMING

Name of the Faculty: M.VIJAYA
Topic: Signals
Class/ Section: 1II B.Tech I-Sem CSE-A

Think-Pair-Share (TPS) is a collaborative learning strategy in which students work together to
solve a problem or answer a question about an assigned reading. This technique requires students
to (1) think individually about a topic or answer to a question: and (2) share ideas with
classmates. Discussing an answer with a partner serves to maximize participation, focus attention
and engage students in comprehending the reading material,
Benefits:
» The Think-Pair-Share strategy is a versatile and simple technique for improving students’
reading comprehension,
» It gives students time to think about an answer and activates prior knowledge.
» TPS enhances students' oral communication skills as they discuss their ideas with one
another.
= This strategy helps students become active participants in learning and can include
writing as a way of organizing thoughts generated from discussions.
T : (Think) Teachers begin by asking a specific question about the text. Students "think™ about
what they know or have learned.about the topic.
P : (Pair) Each student should be paired with another student or a small group.
S : (Share) Students share their thinking with their partner. Teachers expand the "share" into a
whole-class discussion.

Execution:
A, T: Faculty asked question about “Signals”. Students think individually for 5 minutes.
B, P: Each student paired with another student as a small group and should think among

themselves or within a group for 5 minutes.

Then They have written the points what they discussed. Both have them actively
participated and shared the necessary points on topic.
C. S:Asthey shared their thinking with their partnér they came up with Signal concept . They shared

their work into a whole class discussion.

Outcome: The Think-Pair-Share activity gives them the opportunity to feel more comfortable
sharing their thoughts.

('

Instructor

M.Vijaya

‘Assessment Sheet — Co Wise
(Direct Attainment)

G v [[z z s [[v z z z g ESS0VIT6LT| Za
5¢ |E € z T 7 z 5 z £ £ [z z 5 ZSSOVIIELT| 15
va |E 3 B z z z 5 £ 3 € [4 z z 5 TSSOVITELT| 05
ar |v z v 1 Z. z S v v z z [z 5 0SSOVITBLT| B
05 |t z z 1 z Z 5 z [z [z [4 H SVSOVITEZT| BF
L5 4 [4 Z T 4 4 S z z 14 4 4 Z 5 BYSOVTIBLT| Lp
TEEE [3 g 1 z z 5 B z z z z z g (YSOVITGAT| O
85 |v [¥ T [z 3 v v v z T z 5 9PSOVITGLT| GoF
G £ 3 4 z [5 £ £ € [3 [2 z 5 SPSOVTTGLT| bw
or |v v [z z z S v v ¥ z 4 z 5 YPSOVITELL| £
6 |t B z [T 1 5. {4 £ € z z z g EVSOVTIGLY| Zv
¥ |E £ £ [z 1 s 3 € € [z z g TYSOVIGLT| 1¥
85 |5 ¥ [3 z 3 S [H v T [[B TrSCVIGLT| OF
75 |t € [[3 z [3 5 v B 3 T z z B GYSOVITELY| BE
G 1 3 [z z 5 3 £ T z z T s GESOVTIGLT| 8%
T |E £ 1 z z z 5 E € 3 T z [4 S BESOVITELT| Z€
v |s 5 [z z [4 5 [3 5 z z H 5 CESOVTI6LT| 9%
54 S 14 14 T 4 T 5 v Z v Z z T 5 9ESOVIIGLT| SE
£ 3 £ ¥ 14 4 14 5 14 g £ z Z z S CSESOVTIGELT| ¥E
TS |E 1 3 z z T g B € T z z [5 VESOVIIGLT| BS
sv |E € T z [T 5 £ £ £ z z z 5 8SSOVITELT| 29
v |5 g v z z T 5 v 5 5 z [[3 ZGOVITELE| 18
8 |v v [z z z 5 v ¥ v z z H 5 TESOVTI6LT| Of
v e £ z z z z S H £ £ z z z 3 DESOVITBT| 62
6k |€ £ £ z [z S g £ 3 z z z 5 GZSOVIT6LT| 82
ot |v z v 1 z Z 5 ¥ v z z z z 5 BZSOVTIGLL| /2
8 |z z Z T z z 5 z [z 0 z z 5 £Z509TT6LT| o2
61 |z z Z 1 [3 z 5 z [[z 7 [S SZSOVITeLT]| &2
sy |2 z g 1 z z 5 £ z T T [4 [3 g VZSONTTGLE] ¥2
&% |7 v v 1 z z 5 v v v 7 z z g ECSOVTI6LL] EL
9y £ £ € z 4 4 5 E € £ 2 4 4 5 TeSOvITealy g
FE v ¥ 7 T z 5 ¥ v ¥ z z z 5 OZSOVIT6LT] 12
G £ H z T 1 5 z 3 5 H z [g SLSOVIT6LT] OZ
£9 £ £ 13 [14 1 5 £ € £ Z Z 4 g LISOYTTELT] 61
st |5 v ¥ z T T g ¥ H ¥ z z z g STSOVII6LT] 8T
FEG € v 7 H z 5 ¥ 3 € z Z z 5 STS0VIT6LT] ZT
59 13 T € 4 Z [4 5 13 € T [4 14 4 g FISOVITELT| 9T
95 |g € 3 z z z 5 € 3 £ [z 3 g ET5OVITEZT] ST
5F|S g v z z z H v £ S z [4 [g ZISOVTT6LT} ¥L
EERE v [2 7 z z 5 v z 3 H z T B TISOVTIBLL) 61
ss e £ v T z 3 H Y 3 £ [3 z [3 s GISOVTTGLT} 2L
65 |t T 3 z z 1 5 3 B T z z T 5 60SOVTTELT| TT
0s |t 3 1 z z 1 5 3 B £ [3 z z 5 BOSOVIIELT} O1
&% |5 5 v z z 1 5 [5 5 z [z S L0S0VIT6LT| 6
vs v ¥ v z z 3 B [v v z [3 z S J0SOVITELL| 8
& |g 5 z z z [g z £ B z z [5 SOSOVITGLT| £
T T £ £ z ¥ T B B B E [4 T [5 FOSO¥ITELY| §
b |v z v 1 z [3 5 v ¥ z z [4 z 5 E0SOVTI6T| 5
65 |2 z 3 T 7 [3 5 z z z 0 z z s ZOSOVTIELT| ¥
0s Zz z 14 T 2 4 5 4 4 4 T T T S TOSOVTIELT| €
15 |2 [€ 1 z [4 g 3 z z [T z S SLSOVTRLT| ¢
€5 |v v ¥ 1 H T 3 v [7 z T z 5 TISOVIO9LT| T
TEEF] o
W) V2G| (wzlzo twz) a'g0| waleo’]
— : . 2 [oNg
EEviibYd S TV weldvd

10Us2IUL I1'QIN ok, T %09 PISYsSIuL T AIN T
ihynoey

d1:3sin03

wag | palg N

$Z-£10Z 3HILVE 0Z-6T0Z :1E3A JL3pEIY

wamduy uaag wndwo)) jo juawpedag

ADOTONHOAL A0 TLNLILSNT IHLOAT VAQIA

0E 4 [4 T T 4 [4 5 4 [4 14 0 Z [g GBSOVITSLT
9T Z 4 [4 T [4 [4 5 [4 [4 4 z [4 z S BRSOVIIELT
;14 [4 [4 € T 4 [S £ |4 [4 I 4 Z S LASOVITELT
92 ¥ 4 14 T 4 T 5 ¥ ¥ ¥ Z z 4 S 99S0YTI6LT
ZE 13 t € z 4 [4 S £ |3 £ T |4 [4 S FASOVIIGLT
SE i [v Z 4 T S ¥ |4 ¥ I4 4 T S FISOYTIGLT
vE € t z z 4 T F z |3 £ [4 Z [4 S TYSOVITELT
9T € £ 13 4 z T g £ € £ [4 Z 4 S T9s0vIT6LT| L0
9T g 4 v T 4 [4 g ¥ S ¥ 4 Z Z S 0950VII6LT| 90T
a |3 t L 7 4 [4 S \d £ £ [4 z 4 5 BYSQVITELT| SOT
91 13 1 € Z 4 z g 13 3 1 [Z 4 S SYSOVITSLT| vOT
6F € 13 T T 4 4 5 £ € £ [4 T Z § £VSOVTT6LT| EOT
55 E 5 v T 4 [4 I3 v € k] [4 T [4 5 9VSOVIT6LT| 0T
[43 g ¥ ¥ 4 4 z G 14 [4 L [4 T z 9 SVYSOVTIGLT| TOT
44 € £ ¥ i 4 [4 S 4 € £ {4 [4 z S EVSOVITELI| COT
04 € 1 € [4 z T s 13 € 1 [4 4 [4 I TYSOYLTBLT] 66
295 € t T T 4 T .| £ € £ 1 [4 [4 s TYSOVITELTE 86
15 5 S ¥ [4 z T S |4 5 5 4 [4 4 S OYSOVTIBLL] L6
[43 ¥ ¥ ¥ [4 T T g v ¥ 4 Z [4 [4 S E650VIT6LY| 96
124 £ € 4 [4 [4 4 5 T £ € [4 [4 z S BeSOVITHLT| 56
65 £ £ E z z Z g £ £ £ |4 [4 < 5 L6SOVITELT| 6
ES ¥ [4 ¥ 1 z (4 5 v ¥ [4 [4 Z [4 S O6S0VTTIELT| €6
L [4 [4 [4 1 T [4 S Z < z 0 [4 |4 5 S6S0VIT6LI| Z6
113 4 [4 [4 T T [4 S |4 z [4 Z Z Z 5 VESOVTTSLT| 6
[4] 4 z £ T [4 [4 s |3 4 z < [4 1 S IG50VTI6LT] 06
PL ¥ L4 L4 T [4 [4 S ¥ ¥ v 4 [4 Z S T6S0VIT6LT| 68
& £ £ £ (4 [4 < S € £ 13 z [4 S 06S0VIT6L1| 88
143 ¥ ¥ L4 [4 [4 4 S ¥ v L4 z 4 [4 s S850VITELT| 4B
23 £ £ [4 Z [4 1 S [£ € [4 4 4 S £8S0VTISLT| 98
2y € |3 £ 4 z T S € £ 3 [4 Z z g 9§SOVTIGLT| 5§
L5 S 4 ¥ 4 [4 4 S ¥ 5 k4 [4 4 [4 5 SESOVITELT| tB
05 € € ¥ 14 [4 Z S ¥ £ 13 T Z Z 5 VES0VITELT| £
L& £ T £ z T Z S |3 € T z [Z S E8S0VITELT| €8
Ll £ 3 T 4 14 [4] £ € £ z z [4 g TESOVTTELIN 18
&F S S v [4 [4 Z S L € 5 [4 T 14 S 1BS0VIT6LT| 08
05 5 L4 ¥ z [[4 g L z ¥ 4 T Z S 08SOVTIBLY| 64
St £ 3 ¥ 4 4 [4 S L € £ 14 4 [4 S GLSOVITELT| 8L
ES i3 T 3 Z Z T 5 £ € 1 [[4 T 5 BLAOVITOLT| Lt
(34 £ 13 T [4 T E £ 13 I [4 [4 4 5 LLSOVTTOLT| 92
¥ § § v z 4 T S |4 s S |4 T [4 5 9LSOVITELT| L
v 4 ¥ ¥ Z T [4 S 4 L4 4 [4 [4 [4 El SLSOVTITGLT] vi
;44 € € [4 4 [4 [4 5 T € 13 4 [4 z] PLSOVITGLY| €2
05 £ 13 € [[4 [4 S € E £ [4 Z [4 S TLSOVITOLT| TL
St |4 [4 4 T 14 T S ¥ ¥ z 4 4 [4] TLSOVTITELT| TL
(5] [3 Z < 1 z 4 g [4 (4 [4 0 [4 [S TeSOVITELT| 0L
(43 [4 Z [4 13 4 [kil [4 [4 |4 z [4 4 S 0:S0VITELT| 69
55 [4 3 H 4 [4 5 £ 4 [4 I4 z Z s 59597iTELT| §3
15 v v v T Z 4 S v ¥ v [4 4 z 5 89S0VITELT| 5
v € £ € [4 14 [S € £ 13 [4 Z 4 S L9SOVITELT] 99
a9 v ¥ v [4 z 3 S |4 14 ¥ [4 z 4 5 9550vT16LE] 5%
as € £ [T [4 T S 4 £ € [4 z < 5 SOSQVTTELI| +9
11 € £ 13 z i T S 13 € € [4 [[4 5 FOSOVTIBLT| €2
65 S ¥ ¥ [4 z 14 S i g ¥ [4 T 4 S EISOVTIGLT| {9
5 € £ ¥ [4 [4 4 S ¥ £ £ [z Z g TISOVITGLT| 19
¥s € T 13 T T 4 S £ £ T [4 [4 Z 5 T9S0VTT6LT| 09
L5 3 £ T T [4 [S £ £ £ T T 7 S Q9SOVTTELT| 65
St g 5 L Z 4 4 S L4 13 S 14 T [3 5 GSSOVITELT| RS
5 g v ¥ T T Z S ¥ [4 L4 4 Z [4 5 BSSOVITSLT| LS
¥5 £ € L4 4 [z 5 ¥ € £ 4 [4 [4 & LSS0VITELT| 95
&5 13 T £ 4 4 T S £ € T z [T s 9SS50VTIBLT| S5
s € 3 T [4 T T S £ € £ 4 [4 T S SSSOVITELT| S5
& G S ¥ [4 Z T H ¥ S S 4 Z z S PSSOVITGLT| ES

aamBug 23un3s 1ndwe)) jo juawntedag
ADOTONHDAL 40 ALNLLLSNI THLLOAL VAdIA

91 € £ € 14 [4 z 9 £ £ € [4 g [4 4 Praoviteel| ot
OF |4 ¥ 4 14 [4 4 5 ¥ L ¥ z [4 [4 a EISOVTTGLL| SLT
8T £ £ T [4 4 1 5 z £ € 4 [4 [4 s TrSOVITBLT| PAT
05 13 £ € Z [4 1 S £ 13 £ [4 [4 z 5 TISOVITELT| ELT
oL Fl v 14 4 z z g ¥ S Ld [4 |4 [4 S SHSOVTTELL| 2iT
13 £ £ 14 z T T g v £ £ 4 4 [4] BHSOVIIBLY] T
15 13 T 3 [4 1 [4 S 3 £ 1 Z Z [4 S LHSOVTIGLT| CLT
9 13 £ T [4 1 [4 5 £ £ £ 14 Z T S SHSOVTIGLT| 651
1L S S v Z 1 z S v € 3 z z Z 5 SHSOVTITELT| 837
[14 S v v 4 T T S v [4 ¥ [4 z 4 g PHSOVITGLT| 49T
89 £ £ ¥ z T z B |4 £ £ 4 [4 4 9 EHSOVILSL1] 991
[14 13 T € 4 1 T 5 £ € T 4 [4 z 9 ZTHSOVTIBLT| 59T
8¢ E € T 7 1 T Fl € 13 £ 4 [4 4 S THSOVTIGLT| 9T
8E 5 S ¥ T 1 T S | g 5 4 [4 7 S OHSOVTI6LT| €91
Lid L4 ¥ ¥ z 4 4 § v ¥ ¥ 4 [4 [4 S 6OSOVETELT| 79T
LE £ € [4 [3 4 [4 S [4 3 € z 4 T 5 FOSOVITELT| 191
63 £ € 3 4 T Z S £ £ € [4 Z [4 S LOSOYTIGLT| 031
114 L [¥ T z [4 S 14 ¥ [4 [4 [4 z S 9OSOVTIBLL] 65T
[43 4 z [4 1 Z Z S T Z z 2 Z T S SOS0VTTELT| 851
or Z [4 [4 1 z 4] 11 [4 z [4 [4 [4 S VOSOVTIGLT| £5%
YE < {4 £ T [Z S 13 z [4 z 4 4 S £OSOVITSLT| 95T
£T ¥ ¥ 4 T [4 z S ¥ v ¥ T Z [4 S ZOS0VIL6LT| S5
Ve £ £ £ Z [4 4 5 £ £ 3 14 Z 14 5 T950YTISLT| #5T
92 ¥ ¥ 4 [[4 Z s v ¥ ¥ Z z |4 H 0DSOVTIGLT| €5T
fag £ £ T [1 z 1 g z € £ [4 T 4 S 6JSOVTIGLT| 25T
9t £ € £ [4 [4 1 3 € £ 13 t [4 [4 < BISOVTTELT| TST
[14 S ¥ |4 [4 [4 4 $ 4 5 v [4 z 4 i LISOVTTELT| ST
L7 3 £ ¥ [4 4 [4 S v € £ [4 [4 [4 S 9ISOVITELLE GvT
LT € 1 £ < [4 T S £ 13 T Z 4 [4 5 S4S0VII6LY| gvl
SE € £ T 4 4 [S 3 € £ [4 [[4 s PASOYTTIELT| £PT
(4 g E] v z 4 14 Fl L4 £ 5 4 [4 [4 5 EJSOVITELT| vl
91 s 14 v [4 [4 4 S 4 4 v z [4 [4 g CTISOVTTRLT| St
k4 € t ¥ 4 [4 [4] t £ € z [4 z § 04SOVTTI6LT| wrl
44 £ 1 £ T 4 1 g € £ T T 4 [S 6ISOVIT6LT| £FT
ST £ £ T T 4 T S 13 £ 13 [4 4 [4 S BASOVTTISLT] ZrT
8E S S L T [4 1 5 ¥ 5 9 [4 Z [4 S £ISOVITELT| TPT
SE ¥ ¥ ¥ [4 t [4 S ¥ 4 ¥ z z [4 £ 9350VTIGLT| OvT
9T £ |3 [4 [4 [4 4 S 4 € £ Z T 4 g S3SOVET6LT| GET
LE £ 13 £ 4 z 4 S £ £ £ 4 I3 4 H PISOVITRLT| BET
ST 4 4 v T [4 4 5 L |4 Z |4 [4 [4 g £ISOVITHLL] LET
[43 [4 [3 z T [4 [4 g z [4 z 0 z [3 S ZISOVTIBLT| SET
o7 I3 [4 Z T T Z E z {4 [[4 [4 T S 13S0VIT6LT| SE1
L1 T [4 £ T z z 9 € [T 4 z [4 5 QISCVTIBLL| el
£€ v ¥ 4 T [4 T S 14 ¥ v 4 [4 [4 5 6OSOVTTHLT| 85T
v £ £ I 4 4 [4 s £ £ £ [4 z T S 8QSOVIT6LT| 79T
9z 14 ¥ v 4 4 t S 4 ¥ v [4 [4 4 S LASOVITSLT| TET
€ £ T [4 4 7 s [4 £ € [4 |4 [4 S 9asovilsLt| CE1
0E € £ E z [4 1 S € € £ [4 Z [4 S SQSOVTISLT| 62T
9E g ¥ v [4 4 [S ¥ s v [4 4 [4 S PASOVITELT| 82T
L1 € € v T z [4 5 4 £ € [4 Z [4 B €ASOVLITELT| L2T
9z € T € [4 T |4 S € £ T z 4 [4 g ZASOVITELLY 92T
8€ £ € T [4 [4 [4 5 £ |3 £ 14 T z g 1QS0VTI6LT| STT
[44 S S ¥ [4 T [4 g ¥ |3 S [4 [4 T 9 00S0VTIGLT| #E1
53 S v ¥ 4 z [4 S ¥ [¥ [4 z [4 S BASOYTTELT| EZT
68 3 € ¥ 4 [4 z - S L € 13 < z [4 S IGOVIIBLT| ZZT
4 £ T £ T [4 T S € € T [Z 4 S LISOVTTIRLT| TZT
9T £ € T Z z T s £ 13 £ [4 [z 5 SISOVITHLT| 07T
Qg S 5 ¥ 4 z T g L4 5 S 4 [4 [4 S POSOVITGLT| 61T
87 4 ¥ v z Z Tz S 4 ¥ 14 [4 Z € 5 £IS0VTIELT(BIT
62 € € T Z [4 [I [4 £ £ [4 4 4 g I3SOVTTELT| LTT
s 3 £ € Z [4 [4 S € £ € T [4 4 5 TOSOVITGLT| 91T
113 v [4 v 1 4 T S v v 4 [4 4 [4 S QDSOVTTGLT| STT

nivausuyg 22ug snndwoe) Jo juswaedag

ADOTONHOAL 20 ALNLILSNI THLOAT YAQIA

85 £ € ¥ [4 T [4 S v £ |3 [4 |4 [g SWSOVITELT[01T
4 3 T 13 4 T 1 s € £ T [4 |4 [S LWSOVTTELT| 60T
8y € £ T Z 1 1 s 3 £ £ Z 4 Z S SNSOVITSLI| BOZ
St S -3 4 [4 T T S ¥ S 5 4 T [4 S SWSOVTTELT| £02
[+ L 14 L [4 T z 9 4 ¥ 4 [T E4 5 PIWSOYTIGLT| 90T
Ly £ £ [4 [4 [4 4 g < € £ Z Z 4 I EWSOVITELT| SOT
8 13 E 13 [4 Z [4 S £ £ £ z Z Z g ZINSOVTIGLT| vOT
(] v Z v T 4 4 g ¥ |4 [4 [4 4 Z 5 TWSOYTTELT| £0Z
08 [4 < T 1 Z [4 1] [4 z [4 *] 14 [4 S CWSOVTTBLT| Zoz
21 4 4 z T 4 [4 B [4 [4 < [4 [4 [4 S G1S0VITELT| TOZ
69 14 Z € T 4 4 5 € z [4 4 [4 Z g F1SOVITELT| 002
123 L4 ¥ ¥ T T 4 S L] 14 L 4 Z [5 LISOVTT6LT| 661
55 € € £ z Z Z 5 £ £ £ t 4 [4 9 9IS0VTITELT| 86T
¥ 14 ¥ ¥ 4 [4 T s ¥ L4 ¥ [4 [4 [4 g STSOVITELL] £61
18 3 £ [4 4 z T G [4 € € z [4 [S YISOVLTELT| 961
aF £ € £ 4 4 1 5 3 € € 4 4 [4 S £1S0YTT6LT| S6T
94 S 14 ¥ [[4 z 9 |4 B L4 4 [[4] Z150VTI6LT) vol
4 £ 3 v [4 1 4 S ¥ € £ |4 4 Z 5 TISOVIT6LT| 5T
ar 13 T £ Z 1 4 s £ £ H T 4 [4 B £150%1TT641| 26%
[43 € £ 1 Z 1 [4 S 13 £ E [4 4 4 S GASOVTITELL| T6Y
£5 S g ¥ 4 T 4 S |4 £ S Z [4 z S BAGOVETGLT| o6t
&F S ¥ ¥ 14 T [4 S |4 [4 |4 |4 [4 4 S LASOVTI6LT| 6BT
95 £ € L z T Z 5 ¥ 13 13 [4 [4 z S ONSOVTTSLT| 881
] 13 T £ T T T) S £ € T 4 z [4 5 SASOVITGLT| £81
[14 3 £ 1 z T T S £ € £ T Z Z S PASCVTTELT| 981
99 S s ¥ Z T T 5 ¥ Bl g T [4 14] ENSOVTTELI| S8BT
09 ¥ ¥ |4 4 4 [4 5 L4 L4 ¥ Z |4 [4 5 TASOVITELT] #81
vE £ € Z [4 [4 Z 5 [€ € 4 [4 [4 S THSOVTTGLT| £8T
95 E £ £ [4 z 4 5 £ € £ Z [4 [4 S ONSOVTIGLT| Z81
59 ¥ [4 ¥ T Z 4 Bl ¥ 14 4 14 [4 z S 6ISOVITSLT) 181
SE z z 14 T Z [4 S [4 [4 [4 [Z 4 5 8rsovTISLT| 081
19 [4 [4 [4 T 4 Z S 4 z |4 [4 Z [4 s LISCVYTTIGLT| 641
09 Z [4 £ 1 T |4 i 3 [4 Z z 4 [4 g SrSOVTTELT| 821
85 ¥ ¥ |4 1 [4 [4 g 4 ¥ 14 4 [14] SISOVTT6LT| £40

Mautduy 3G sapadwoy) jo Juaunaedag
ADOTONHIIL 10 ZLNLLLSNT THLOAT VAAIA

[Lor 4

HWW Al

- M

H

g

i3
NS alE
pu3] WRMuETY 00 | wowueliv 00 pouay | 00

ISUN03 IRL HOA 50D JO LNIWSSISSY
az C e |dEEeER| | 0 3 (13 (43 E (53 0'€ T OE 3 e |7 oE £ TAD ININNIVLLY OO
[Bogs | erieEE| eeemE| LosTL TUROSLT | SU98 | SLLL 00T svT8 | 1678 | EGEL | U861 00 CoT 00T | .pasods suapnys oo,
[Moo'syT [Rooror@|Lo0eliE]Tooze [Foovel | oofoz [oozey | ver O 006l | 0OP6L. | GOGLE | QOFPEC | 00 VLo \00PET ¥ET | pasoas mmpms jo oy
FET FET FET [5x4 FET TET tET 3 FeL it ez X X3 X3 T | padwae sjuspnis jo oy
TEr v'E TE TE [61 FR 5 £ [TE 51 X3 0¢ 5 Spielll aBEIIAY

66 |€ € € [4 7 5 £ € 3 z z z S FOSOVSTERT| vEZ
or [e 3 £ [z z 5 € £ € z z [3 s E0SOVST68T| EET
SE|€ £ g t z z 5 £ € E T z z [Z0S0VSTBET| CEC
G € € z z [5 € € £ z z z 5 T0SOVST68T| teT
65 [€ 3 5 T 4 z g g £ 3 T 4 z s ODSOVITELT| CEZ
BF € 3 £ T z z 5 3 € € T z z 5 BISOVETGLT] 622
g I¥ v ¥ T T [4 5 v t v T z [5 LdSOTT6LT| 822
sr | B T z [3 1 s z 5 3 T z [3 g 9dSOVITELT| ict
5T £ € g z 2 1 S 13 £ £ t [[4 S SIS0VITELT 9Z7
65 IS v v T T [4 H v 5 v z z z 5 vdSOVIT6LT] ST
vl | £ v z 1 [3 B v 3 € z [3 [5 EJSOVET6LT| VZZ
sT [£ T 3 z 1 [5 € € T z z [4 5 ZJSOVIT6LT| 22
8y 13 € T Z T [4 S 3 £ £ Z 4 z] 0dSOVII6LL| ZZE
£S 9 S 14 Z T [4 1 14 £ S z 4 [4] GNSOVTTELT| TZZ
15 [E £ € 3 z [3 S g g £ z [4 3 5 BNSOVTIBLT| 022
FE v v z [4 [3 s v ¥ v z [4 z s LNSOVTTELT| 612
65 |E € [[4 z T B [3 3 § z z z s 9NSOVTTGLT| 81Z
8y |E £ € z z T B E 3 £ z z T s SNSOVTIGLI| £17
65 |5 ¥ v z z z 5 v 5 v z z [4 S PNSOVTI6LI} 91
% [e £ v z 1 z B v € £ z z T g ENSOVEIBLT| ST
Zs | T £ 7 1 z 5 € € 1 z Iz z S TNSOVITGLY| FIZ
5T |€ £ 1 z 1 z 5 € € € z [3 [3 s TNSOVTI6LTY ETT
ENNE 5 v z [[3 5 v € 5 [T 1 g ONSOVEI6LL| 21z
v |5 ¥ G z T z 5 [T 3 z z [4 H GNSOVLTELT| T1Z

o_m._ur__m:m NG aandwo?) Jo Junupedaq

O

ADOTONHOAL 40 ALNLLLSN] IHLOAT VAQIA

Course End Survey Form

VIDYA JYOTHI INSTITUTE OF TECHNOLOGY

(Accredited by NBA, Approved by AICTE New Delhi & Permanently Affiliated to INTUH)
Aziz Nagar Gate, C.B, Post, Hyderabad-500 075,

Department of Computer Science & Engineering
Course End Survey FormAcademic year: 2019-20

!]
Name of the student)QDJA’ W Year &sem m-I
Roll number PTatlihoszyg Regulations |[R15

We need your help in evaluating the courses offered, by responding the short survey below.

Your feedback is very valuable for us in order to continually improve our program, The aim of this survey is
to evaliate how well each of the courses has prepared you to have necessary skills.
-6 Your responses will be kept confidential and will not be revealed to anyone outside the department without your
permission,

Please indicate (\!) the level to which you agree with the following criterion:

i Dear Student,
(3: Strongly agree 2: Agree 1. Strongly disagree)

Name of The Course:LINUX PROGRAMMING RATING
After completing this course the student must demonstrate the knowledge and ability to 3 2 1
~71 CO 1 | Understand and make effective use of Linux utilities, 3
CO 2 | Able to write shell scripts to solve the problems. 32
CO 3 | Develop the skills necessary for file system and directory handling. 3
! CO 4 | Learn the concepts of process and signal system calls. K4 ‘
CO 5 | Implement inter process communication mechanisms. 3 |
Any other comments / suggestions:
1
/

Sigmature

