

Vidya Jyothi Institute of Technology

An Autonomous Institution

(Accredited by NAAC & NBA, Approved by AICTE New Delhi & Permanently Affiliated to JNTUH)

Aziz Nagar Gate, C.B. Post, Hyderabad-500 075

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Interactive Learning : Think Pair share

Academic year: 2019-20

Faculty Name: G.Kalpana

Subject : Software Engineering

Topic: Function Point Calculation

Participants: Students of II/II D section

Think-pair-share (TPS) is a collaborative learning strategy where students work together to solve a problem or answer a question about an assigned reading. This strategy requires students to (1) think individually about a topic or answer to a question; and (2) share ideas with classmates. Discussing with a partner maximizes participation, focuses attention and engages students in comprehending the reading material.

Content:

- *Function-based metrics:* use the function point as a normalizing factor or as a measure of the "size" of the specification
- *Specification metrics:* used as an indication of quality by measuring number of requirements by type

Function-Based Metrics

- The *function point metric* (FP), first proposed by Albrecht, can be used effectively as a means for measuring the functionality delivered by a system.
- Function points are derived using an empirical relationship based on countable (direct) measures of software's information domain and assessments of software complexity
- Information domain values are defined in the following manner:
 - Number of external inputs (EIs)
 - Number of external outputs (EOs)
 - Number of external inquiries (EQs)
 - Number of internal logical files (ILFs)
 - Number of external interface files (EIFs)

Function Points

• To compute function points (FP), the following relationship is used: $FP = count \ total \ X [0.65 + 0.01 \ X \sum (F_i)]$ (1)

Where count total is the sum of all FP entries obtained from figure.

Information Domain Value	Weighting factor Count simple average complex						
Domain value	Count		simple	average	complex		
External Inputs (Els)		х	3	4	6	=	
External Outputs (EOs)			4	5	7	=	
External Inquiries (EQs)			3	4	6	=	
Internal Logical Files (ILFs)		х	7	10	15	=	
External Interface Files (EIFs)			5	7	10	=	
Count total					\rightarrow	► [

• The F_i (i= 1 to 14) are value adjustment factors based on responses to the following questions:

Implementation: As part of this activity students are asked to find out the function point for given sample values Using the above formula .

- **1.** Compute the function point value for a project with the following information domain characteristics:
 - (1) No. of user inputs = 24
 - (2) No. of user outputs = 65
 - (3) No. of user inquiries = 12
 - (4) No. of files = 12
 - (5) No. of external interfaces = 4

Assume all complexity adjustment values are moderate and 14 algorithms have been counted.

Solution:

Measurement Parameter Count			Weighing factor Simple Average Complex			
1. Number of external inputs (EI)	24	*	4 = 96	;		
2. Number of external outputs (EO)	65	*	5 = 32:	5		
3. Number of external inquiries (EQ)	12	*	4 = 48	3		
4. Number of internal files (ILF)	12	*	10 = 120	0		
5. Number of external interfaces (EIF)	4	*	7 = 28	3		
$Count-total \rightarrow$			61	7		

Now Fi for moderate case = 2.

So sum of all Fi (i " 1 to 14) = 14 * 2 = 28

FP = Count-total * [0.65 + 0.01 * S (Fi)] = 617 * [0.65 + 0.01 * 28] = 617 * [0.65 + 0.28] = 617 * [0.65 + 0

617 * 1.23 = 758.91 = **759**

Outcome: All the students groups are actively participated in this activity and i gave few suggestions for those who are facing difficulty in solving the above problem with that they understood the topic easily and completely.

(Faculty Incharge)

(CSE-HOD)