DEPARTMENT OF HUMANITIES & SCIENCES

ACADEMIC REGULATIONS & SYLLABI (R-22)

B.Tech I Year

Mechanical Engineering

w.e.f. the Academic Year 2022-2023

Vidya Jyothi Institute of Technology
(An Autonomous Institution)
(Accredited by NAAC A+ Approved by AICTE New Delhi & Permanently Affiliated to JNTUH)
Aziz Nagar Gate, C.B. Post, Hyderabad-500 075
B. TECH I YEAR COURSE STRUCTURE 2022-23
(Mechanical Engineering)
Semester – I

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A221001</td>
<td>Mathematics-I(Linear Algebra & Calculus)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>A221002</td>
<td>Applied Physics</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>A221081</td>
<td>Applied Physics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>4</td>
<td>A221501</td>
<td>C-Programming for Engineers</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>A221581</td>
<td>C-Programming for Engineers Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>6</td>
<td>A221003</td>
<td>English for Skill Enhancement</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>7</td>
<td>A221082</td>
<td>English Language & Communication Skills Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>A221301</td>
<td>Elements of Mechanical Engineering</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>9</td>
<td>A221381</td>
<td>Engineering Workshop</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Induction Programme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>11</td>
<td>3</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>

Semester – II

<table>
<thead>
<tr>
<th>S. No</th>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A222005</td>
<td>Mathematics– II (Ordinary Differential Equations & Vector Calculus)</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>A222006</td>
<td>Engineering Chemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4.0</td>
</tr>
<tr>
<td>3</td>
<td>A222084</td>
<td>Engineering Chemistry Lab</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>A222304</td>
<td>Engineering Mechanics</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3.0</td>
</tr>
<tr>
<td>5</td>
<td>A222305</td>
<td>Engineering Materials</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2.0</td>
</tr>
<tr>
<td>6</td>
<td>A222303</td>
<td>Engineering Graphics & Modelling</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3.0</td>
</tr>
<tr>
<td>7</td>
<td>A222583</td>
<td>Python Programming Lab</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>3.0</td>
</tr>
</tbody>
</table>

| | Total | | 11| 4 | 10| 20 |
MATHEMATICS-I (LINEAR ALGEBRA AND CALCULUS)

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives:

To learn

- Types of matrices and their properties.
- Concept of a rank of the matrix and applying this concept to know the consistency and solving the system of linear equations.
- Concept of eigen values and eigen vectors and to reduce the quadratic form to canonical form
- Geometrical approach to the mean value theorems and their application to the mathematical problems
- Evaluation of improper integrals using Beta and Gamma functions.
- Partial differentiation, concept of total derivative
- Finding maxima and minima of function of two and three variables.

Course Outcomes:

After learning the contents of this course, the students must able to:

1. Write the matrix representation of system of linear equations and identify the consistency of the system of equations.
2. Find the Eigen values and Eigen vectors of the matrix and discuss the nature of the quadratic form.
3. Analyze the convergence of sequence and series.
4. Discuss the applications of mean value theorems to the mathematical problems, Evaluation of improper integrals using Beta and Gamma functions.
5. Examine the extrema of functions of two variables with/ without constraints.

Syllabus

UNIT-I Matrices and Linear System of Equations:

UNIT-II: Eigen Values and Eigen Vectors:
Eigen values, Eigen vectors – properties, Cayley-Hamilton Theorem (without Proof) - Inverse and powers of a matrix by Cayley-Hamilton theorem – Diagonalization of matrix- Quadratic forms: Nature, Index and Signature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation.

UNIT-III: Sequences & Series:
Basic definitions of Sequences and series, Convergence and divergence, Ratio test, Comparison test, Cauchy’s root test, Raabe’s test, Integral test, Absolute and conditional convergence.
UNIT-IV: Improper Integrals and Mean Value Theorems:

Improper Integrals: Gamma and Beta Functions-Relation between them, their properties – evaluation of improper integrals using Gamma / Beta functions.

Mean Value Theorems: Rolle’s Theorem, Lagrange’s mean value theorem, Cauchy’s mean value theorem, Generalized Mean Value theorem (Taylor’s and MacLaurin’s Series all theorems without proof) – Geometrical interpretation of Mean value theorems.

UNIT-V: Functions of several variables:

Partial Differentiation: Total derivative, Functional dependence, Jacobian Determinant- Maxima and Minima of functions of two variables with constraints and without constraints, Method of Lagrange Multipliers.

Textbooks:

Reference Books:
B. Tech I Year I Semester

Course Outcomes:

At the end of the course the student will be able to
1. Understand various optical phenomena of light
2. Apply the basic principles of quantum mechanics to classify solids based on the band theory
3. Elucidate the characteristics of semiconductors and semiconductor devices
4. Apply the knowledge of nanotechnology for societal applications
5. Explain the working principle of lasers and optical fibers

Unit – I Wave Optics

UNIT-II Introduction to Quantum Physics and Band theory of solids

Introduction to quantum physics: Planck’s Law (qualitative treatment), wave-particle duality, de-Broglie hypothesis of matter waves, properties of matter waves, time independent Schrodinger equation, Born interpretation of wave function, particle in one dimensional potential box, Fermi-Dirac distribution. Classical free electron Theory (Qualitative treatment)- merits and demerits, Bloch theorem, Kronig-Penny model (qualitative treatment), E-k diagram, effective mass of electron, Energy bands in solids, classification of materials into metals, semiconductors and insulators.

UNIT-III Semiconductors and Semiconductor devices

Intrinsic and extrinsic semiconductors- energy band diagram and position of fermi level (qualitative treatment). Direct and indirect band-gap semiconductors, Formation of PN junction, energy level diagram of PN junction, I-V characteristics of PN junction diode; construction, working and characteristics of Photo diode, solar cell and light emitting diode, Hall effect and its applications

UNIT-IV Nanotechnology

Nanoscale, quantum confinement, surface to volume ratio, bottom-up fabrication: sol-gel, precipitation, combustion methods-top-down fabrication: Ball milling, physical vapor deposition (PVD), chemical vapor deposition (CVD), characterization techniques – basic principles of XRD, SEM, TEM; applications of nanomaterials.

UNIT-V Lasers and Fiber Optics

Introduction to interaction of radiation with matter: Absorption, spontaneous emission and stimulated emission, Einstein coefficients and their relations, characteristics of a laser, population inversion, important

Introduction to optical fibers, total internal reflection, construction of optical fiber, acceptance angle and numerical aperture, step and graded index fibers, block diagram of optical fiber communication system, applications of optical fibers.

Text books:

2. Engineering Physics by V Rajendran, McGraw Hill Education.

Reference books:

B. Tech (Mechanical Engineering)

APPLIED PHYSICS LAB

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A221081</td>
<td>L T P C</td>
<td>1.5</td>
<td>40 60 100</td>
</tr>
</tbody>
</table>

B. Tech I Year I Semester

Course Outcomes:

At the end of the course, the student will be able to

1. Apply optical phenomena to characterize optical sources and components.
2. Characterize semiconductors and semiconductor devices.
3. Study transient response of RC circuit and resonance mechanisms in mechanical and electrical systems.
4. Collect data and evaluate the outcomes of an experiment quantitatively and qualitatively.
5. Carry out experimental data analysis.

LIST OF EXPERIMENTS

1. Newton’s rings: Determination of the radius of curvature of a given plano-convex lens by forming Newton’s rings.
2. Diffraction grating: Determination of wavelength of a given monochromatic source using a plane diffraction grating.
3. Dispersive power: Determination of dispersive power of given prism.
5. Energy gap of P-N junction diode: Determination of the energy gap of a semiconductor diode.
7. Photo diode: Study of V-I characteristics of photo diode at different intensities.
9. LCR Circuit: Determination of the resonance frequency of forced electrical oscillator in series and parallel.
10. RC- Circuit: Determination of the time constant of RC-circuit.
11. Optical fiber: a) Determination of the acceptance angle and numerical aperture of optical fiber.
 b) Estimation of attenuation in optical fiber
 Note: Any 10 experiments are to be performed.

Reference books:

Course Outcomes:
At the end of this course, the student would be able to
1. Design Algorithms and Flowcharts for real world applications.
2. Know various operators and decision statements for Program development.
3. Design programs involving iteration statements and code reusability using Functions.
4. Develop programs using arrays and identify various string handling functions.
5. Analyze various searching and sorting techniques.

UNIT - I:
C Language Preliminaries: Keywords and Identifiers, Constants, Variables, Data Types, and Input / Output Statements with suitable illustrative “C” Programs.

UNIT - II:
Conditional/Decision Statements: if, if-else, Nested if-else, else-if ladder, and Switch-Statement with suitable illustrative “C” Programs.

UNIT - III:
Loop Control Statements: while, do-while and for with suitable illustrative “C” Programs, break, continue.
Pointers: Defining pointers, increment & decrement operations, Pointer to Pointers.

UNIT - IV:
Arrays: Introduction to Arrays, One-Dimensional Arrays, Two-Dimensional Arrays, Arrays and Functions, Pointers and Arrays.
Strings: Introduction to Strings, String I/O, String Manipulation Functions (strlen(), strcmp(), strcat(), strcpy(), strrev(), toupper(), tolower()).

UNIT - V:
Structures: Definition and Initialization of Structures, Accessing structure members, Unions, typedef.
Searching and Sorting: Linear Search, Binary Search, Bubble Sort, Insertion Sort.
Data Structures: Introduction, Stacks, Queues.
TEXT BOOKS:

REFERENCE BOOKS:

B. Tech (Mechanical Engineering) R22

C-PROGRAMMING FOR ENGINEERS LAB

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A221581</td>
<td>L 1 T 0 P 2</td>
<td>1.0</td>
<td>40</td>
</tr>
</tbody>
</table>

B.Tech. I Year I Semester

Course Outcomes:
At the end of this course, the student would be able to
1. Apply the specification of syntax rules for numerical constants, variables and data types.
2. Know the usage of various operators and design programs on decision Statements.
3. Design programs on loop control statements, pointers and code reusability using functions.
4. Develop programs on array and strings.
5. Implement programs on structures and various searching and sorting techniques.

Week 1
Ubuntu and Linux Commands.

Week 2
Designing of flowcharts and algorithms
1. Areas of Polygons.
2. Calculation of Simple and Compound Interest.
3. Swapping of Two numbers with and without temporary variable.
4. Checking whether a number is even or odd.
5. Sum of first ‘n’ natural numbers.
6. Checking a number whether it is divisible by any given number.
7. Evaluation of mathematical expressions.
8. Programs using scanf() and printf() statements.
9. Program to find the roots of quadratic equation.

Week 3
Programs on operators.(min 9 programs)
Programs on precedence and Associativity & Type conversions.
Programs on Conditional Statements or Decision Statements.(12)
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 4, 5, 6 | Programs on Loop Control Statements (12)
Programs on Pointers, pointer arithmetic, pointer to pointer (6).
Programs on Functions, Recursion & Storage classes (8) |
| 7, 8 | Programs on One Dimensional Arrays (3)
Programs on Two Dimensional Arrays (2)
Programs on Arrays and Functions, Pointer to Array.
Programs on Strings with string built-in or manipulation Functions (8) |
| 9, 10, 11 | Programs on Accessing Structures (4)
Programs on Unions, typedef (4)
Implementation of Linear Search and Binary Search.
Implementation of Bubble Sort and Insertion Sort |
ENGLISH FOR SKILL ENHANCEMENT

<table>
<thead>
<tr>
<th>Department of Humanities & Sciences</th>
<th>I B.Tech I Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Hours/Week</td>
</tr>
<tr>
<td>A221003</td>
<td>L</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

B. Tech I Year I Semester

Course Objectives:

This course will enable the students to:

1. Improve the language proficiency of students in English with an emphasis on Vocabulary, Grammar, Reading and Writing skills.
2. Develop study skills and communication skills in various professional situations.
3. Equip students to study engineering subjects more effectively and critically using the theoretical and practical components of the syllabus.

Course Outcomes:

Students will be able to:

Understand the importance of vocabulary and sentence structures.

1. Choose appropriate vocabulary and sentence structures for oral and written communication.
3. Develop comprehension skills from the known and unknown passages through effective reading strategies.
4. Construct paragraphs, letters, essays, abstracts, précis and reports in various contexts thereby improving proficiency in writing modules of English.

UNIT - I

Vocabulary: The Concept of Word Formation - The Use of Prefixes and Suffixes - Acquaintance with Prefixes and Suffixes from Foreign Languages to form Derivatives - Synonyms and Antonyms

Grammar: Identifying Common Errors in Writing with Reference to Articles and Prepositions.

Reading: Reading and Its Importance - Techniques for Effective Reading.

Writing: Sentence Structures - Use of Phrases and Clauses in Sentences - Importance of Proper Punctuation - Techniques for Writing precisely – Paragraph Writing -Types, Structures and Features of a Paragraph - Creating Coherence - Organizing Principles of Paragraphs in Documents.

UNIT - II

Vocabulary: Words Often Misspelt - Homophones, Homonyms and Homographs
Grammar: Identifying Common Errors in Writing with Reference to Noun-pronoun Agreement and Subject-Verb Agreement.

Reading: Sub-Skills of Reading – Skimming and Scanning – Exercises for Practice

Writing: Nature and Style of Writing - Defining/Describing People, Objects, Places and Events – Classifying - Providing Examples or Evidence.

UNIT - III

Vocabulary: Words Often Confused - Words from Foreign Languages and their Use in English.

Grammar: Identifying Common Errors in Writing with Reference to Misplaced Modifiers and Tenses.

Reading: Sub-Skills of Reading – Intensive Reading and Extensive Reading – Exercises for Practice.

UNIT - IV

Vocabulary: Standard Abbreviations in English

Grammar: Redundancies and Clichés in Oral and Written Communication.

Reading: Survey, Question, Read, Recite and Review (SQ3R Method) - Exercises for Practice

Writing: Writing Practices- Essay Writing-Writing Introduction and Conclusion – Précis Writing.

UNIT - V

Vocabulary: Technical Vocabulary and their Usage

Grammar: Common Errors in English (Covering all the other aspects of grammar which were not covered in the previous units)

Reading: Reading Comprehension-Exercises for Practice

TEXTBOOK:

REFERENCE BOOKS:

1. Effective Academic Writing by Liss and Davis (OUP)
ENGLISH LANGUAGE AND COMMUNICATION SKILLS LAB

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A221082</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td>0 0 2 1</td>
<td>40 60</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

B. Tech I Year I Semester

Course Objectives:

1. To facilitate computer-assisted multi-media instruction enabling individualized and independent language learning
2. To sensitize the students to the nuances of English speech sounds, word accent, intonation and rhythm
3. To bring about a consistent accent and intelligibility in students’ pronunciation of English by providing an opportunity for practice in speaking
4. To improve the fluency of students in spoken English and neutralize the impact of dialects.
5. To train students to use language appropriately for public speaking, group discussions and interviews

Course Outcomes:

Students will be able to:

1. Reproduce speech sounds and improve language
2. Develop accent and pronunciation in various situations
3. Understand variants in pronunciation by differentiating between British and American accents
4. Identify the diverse purposes of listening and speaking
5. Exhibit critical thinking, problem-solving and decision-making skills through Group Discussions

Exercise I

CALL Lab:

Understand: Listening Skill- its importance-Purpose-Process-Types-Barriers-Effective Listening.

Practice: Introduction to Phonetics-Speech Sounds-Vowels and Consonants-Minimal Pairs - Consonant Clusters - Past Tense Marker and Plural Marker - Testing Exercises

ICS Lab:

Understand: Spoken vs. Written language - Formal and Informal English.

Exercise II

CALL Lab:
Practice: Basic Rules of Word Accent - Stress Shift - Weak Forms and Strong Forms- Stress patternin sentences – Intonation - Testing Exercises

ICS Lab:

Exercise III

CALL Lab:
Understand: Errors in Pronunciation-Neutralizing Mother Tongue Interference (MTI).
Practice: Common Indian Variants in Pronunciation – Differences between British and American Pronunciation - Testing Exercises

ICS Lab:
Understand: Descriptions – Narrations - Giving Directions and Guidelines – Blog Writing
Practice: Giving Instructions – Seeking Clarifications – Asking for and Giving Directions – Thanking and Responding – Agreeing and Disagreeing – Seeking and Giving Advice – Making Suggestions.

Exercise IV

CALL Lab:
Understand: Listening for General Details.

Practice: Listening Comprehension Tests - Testing Exercises

ICS Lab:
Practice: Making a Short Speech – Extempore - Making a Presentation.

Exercise V

CALL Lab:
Understand: Listening for Specific Details.

Practice: Listening Comprehension Tests -Testing Exercises

ICS Lab:
Understand: Group Discussion

Practice: Group Discussion
REFERENCE BOOKS:

ELEMENTS OF MECHANICAL ENGINEERING

Department of Humanities & Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A221301</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td>0 0 2 1</td>
<td>50</td>
<td>-</td>
<td>50</td>
</tr>
</tbody>
</table>

B.Tech. I Year I Semester

Course Outcomes:
At the end of the course, students will be able to:
1. Understand the operation, usage and applications of different measuring instruments and tools.
2. Prepare simple composite components and joining different materials using soldering process.
3. Identify tools & learn practically the process of turning, milling, grinding on mild steel pieces.

LIST OF EXPERIMENTS

Perform any ten experiments from the following

1. Study of measurement units.
3. To measure diameter of a given wire and sphere, thickness of a given sheet and volume of an irregular lamina using micrometer screw gauge.
4. Use of straight edge and sprit level in finding the flatness of surface plate.
5. Determination of flash and fire point of a given fuel
6. Metal joining process—soldering of metal alloys to any PCB board
7. A simple composite geometry preparation by hand layup method.
8. Grouping of dry cells for a specified voltage and current and its measurement using ammeters and voltmeters etc.
9. Drop point and penetration apparatus for grease.
11. Demonstration of lathe, milling, drilling, grinding machine operations.
12. Study of constructional features of a metallurgical microscope.
13. Study of 3D printing of different components.
15. Study of boilers.
B. Tech. I Year I Semester

Course Outcomes:

At the end of the course, the student will be able to
1. Understanding the tools and methods of using to fabricate engineering Components.
2. Applying the measuring techniques to verify the dimensional accuracy.
3. Evaluating various methods and trades of workshop in the component building.

1. TRADES FOR EXERCISES:

At least two exercises from each trade:
2. Fitting – V-Fit, Step Cutting & Flat Filling.
3. Tin-Smithy – Open Scoop, Rectangular Tray & Conical Funnel.

2. TRADES FOR DEMONSTRATION & EXPOSURE

Plumbing, Machine Shop, Power tools in construction and Wood Working

TEXT BOOKS:

REFERENCE BOOKS:

2. Workshop Manual / Venkat Reddy/ BSP
B. Tech (Mechanical Engineering)

MATHEMATICS II (ORDINARY DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A222005</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td>3 1 0 4</td>
<td>40 60</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

B.Tech I Year II Semester

Pre-requisites: Mathematical Knowledge at pre-university level

Course Objectives:

To learn

- Methods of solving the differential equations of first and higher order.
- Concept, properties of Laplace transforms
- Solving ordinary differential equations using Laplace transforms techniques.
- The physical quantities involved in engineering field related to vector valued functions

The basic properties of vector valued functions and their applications to line, surface and volume integrals

Course Outcomes:

After learning the contents of this course the students must be able to:

1. Classify the various types of differential equations of first order and first degree and apply the concepts of differential equations to the real-world problems.
2. Solve higher order differential equations and apply the concepts of differential equations to the real-world problems.
3. Find the Laplace Transform of various functions and apply to find the solutions of differential equations.
4. Evaluate the multiple integrals and identify the vector differential operators physically in engineering problems.
5. Evaluate the line, surface and volume integrals and converting them from one to another by using vector integral theorems.

UNIT-I:

First order Ordinary Differential Equations and their Applications:

Introduction to ODE, Exact, Linear and Bernoulli, Applications of ODE: Newton’s law of cooling, law of natural growth and decay, orthogonal trajectories.

UNIT-II:

Higher Order Linear Differential Equations:

Linear differential equations of second and higher order with constant coefficients, RHS term of the type $f(X) = e^{ax}, \sin ax, \cos ax \text{ and } x^k, e^{ax}V(x), x^kV(x)$. Method of variation of parameters, Equations reducible to Linear ODE with constant coefficients: Cauchy-Euler Equation and Legendre’s Equations.

Applications: Electric Circuits.
UNIT-III:

Laplace transforms:

UNIT-IV:

Multiple Integrals & Vector Differentiation:

Multiple integrals - double and triple integrals – change of order of integration (Only Cartesian form)- change of variables (Cartesian to Polar for double integral, Cartesian to Spherical for triple integral). Gradient- Divergence- Curl and their related properties - Potential function - Laplacian and second order operators.

UNIT-V:

Vector Integration:

Line integral, work done, Surface and Volume integrals. Vector integrals theorems: Green’s, Stoke’s and Gauss Divergence Theorems (Only Statements & their Verifications).

Textbooks:

Reference Books:

ENGINEERING CHEMISTRY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A222006</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td>3 1 0 4</td>
<td>40 60</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

B.Tech I Year II Semester

Course Objectives:

1. To bring adaptability to new developments in Engineering Chemistry and to acquire the skills required to become a perfect engineer.
2. To include the importance of water in industrial usage, fundamental aspects of battery chemistry, significance of corrosion - it’s control to protect the structures.
3. To imbibe the basic concepts of petroleum and its products.
4. To acquire required knowledge about engineering materials like cement, smart materials and Lubricants.

Course Outcomes:

The students will able to

1. understand the basic properties of water and its usage in domestic and industrial purposes.
2. acquire the basic knowledge of electrochemical procedures related to corrosion and its control.
3. learn the fundamentals and general properties of polymers and other engineering materials.
4. acquire knowledge of various energy sources.
5. apply the knowledge of engineering materials in daily life.

UNIT - I: Water and its treatment: (10)

UNIT – II Battery Chemistry & Corrosion: (11)

Introduction - Classification of batteries- primary, secondary and reserve batteries with examples. Basic requirements for commercial batteries. Construction, working and applications of Zn-air and Lithium-ion battery. Applications of Li-ion battery to electrical vehicles. Fuel Cells-Differences between battery and a fuel cell, Construction and applications of Methanol Oxygen fuel cell and Solid oxide fuel cell. Solar cells - Introduction and applications of Solar cells. **Corrosion:** Causes and effects of corrosion – theories of chemical and electrochemical corrosion – mechanism of electrochemical corrosion, Types of corrosion: Galvanic, water-line and pitting corrosion. Factors affecting rate of corrosion, Corrosion control methods- Cathodic protection – Sacrificial anode & impressed current methods and Electroless plating.
UNIT - III: Polymeric materials: (9)
Definition – Classification of polymers with examples – Types of polymerizations –
addition and condensation polymerization with examples – Nylon 6:6, Terylene Plastics:
Definition and characteristics- thermoplastic and thermosetting plastics, Preparation, Properties
and engineering applications of PVC, Bakelite and Teflon.
Rubbers: Natural rubber and its vulcanization.
Synthetic Rubbers- Characteristics –preparation – properties and applications of Buna-S, Butyl
and Thiokol rubber.
Conducting polymers: Characteristics and Classification with examples-mechanism of
conduction in trans-polyacetylene and applications of conducting polymers.
Biodegradable polymers: Concept and advantages – Poly lactic acid and poly vinyl alcohol and
their applications.

UNIT - IV: Energy Sources: (9)
Introduction, Calorific value of fuel – HCV, LCV- Dulong’s formula, Numerical problems.
Classification- Solid fuels: coal – analysis of coal – proximate and ultimate analysis and their
significance. Liquid fuels – petroleum and its refining, cracking types – moving bed catalytic
cracking. Knocking – octane and cetane rating, synthetic petrol - Fischer-Tropsch’s process;
Gaseous fuels – composition and uses of natural gas, LPG and CNG, Biodiesel – Trans
esterification and advantages.

UNIT - V: Engineering Materials: (9)
Cement: Portland cement, its composition, setting and hardening.
Smart materials and their engineering applications
Shape memory materials- Poly L- Lactic acid. Thermo response materials- Poly acryl amides and
Poly vinyl amides
Lubricants: Classification of lubricants with examples-characteristics of a good lubricant -
mechanism of lubrication (thick film, thin film and extreme pressure)- properties of lubricants:
viscosity, cloud point, pour point, flash point and fire point.

TEXT BOOKS:
2. Engineering Chemistry by Rama Devi, Venkata Ramana Reddy and Rath, Cengage
learning, 2016

REFERENCE BOOKS:
B. Tech (Mechanical Engineering)

ENGINEERING CHEMISTRY LABORATORY

<table>
<thead>
<tr>
<th>Department of Humanities & Sciences</th>
<th>I B.Tech II Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Code</td>
<td>Hours/Week</td>
</tr>
<tr>
<td>A222084</td>
<td>L</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B.Tech I Year II Semester

Course Objectives:
The course consists of experiments related to the principles of chemistry required for engineering student. The student will learn:

1. Estimation of hardness and chloride content of water to check its suitability for drinking purpose.
2. To perform estimation of acids and bases using conductometry, potentiometry and pH metry methods.
3. To prepare polymers such as Thiokol rubber and Nylon-6 in the laboratory.
4. Skills related to the lubricant properties such as saponification value, surface tension and viscosity of oils.

Course Outcomes:
The experiments will make the student gain skills on:

1. Determination of parameters like hardness and Chloride content of water.
2. Determination of rate of corrosion of mild steel in various conditions.
3. To perform methods such as conductometry, potentiometry and pH metry in order to find out the concentrations or equivalence points of acids and bases.
4. To prepare polymers like Thiokol rubber and Nylon-6.
5. Estimation of Saponification value, Viscosity and Surface tension of lubricant oils.

Choice of 8-10 Experiments from the following:

1. **Volumetric Analysis:** Estimation of Hardness of water by EDTA Complexometry method.
2. **Corrosion:** Determination of rate of corrosion of mild steel in various conditions.
3. **Conductometry:**
 a. 1. Estimation of the concentration of an acid by Conductometry.
 b. 2. Estimation of the concentration of Mixture of acids by conductometry
4. **Potentiometry:**
 a. Estimation of the Concentration of an acid by potentiometry
 b. Estimation of the amount of Fe²⁺ by Potentiometry
5. **pH Metry:** Determination of an acid concentration using pH meter.
6. **Argentometry:** Estimation of Chloride content of water by argentometry
7. **Preparations:**
 a. Preparation of Thiokol rubber.
 b. Preparation Nylon – 6.
8. Lubricants:
 1. Estimation of acid value of given lubricant oil.
 2. Estimation of Viscosity of lubricant oil using Ostwald’s Viscometer.
 3. Estimation of Surface tension of lubricant oil using Stalagmometer.

REFERENCE BOOKS:
 1. Lab manual for Engineering chemistry by B. Ramadevi and P. Aparna, S Chand Publications, New Delhi (2022)
 3. Inorganic Quantitative analysis by A.I. Vogel, ELBS Publication
B. Tech (Mechanical Engineering)

ENGINEERING MECHANICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A222304</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>3 0 0 3</td>
<td>40 60</td>
<td>100</td>
</tr>
</tbody>
</table>

UNIT- I

INTRODUCTION TO ENGINEERING MECHANICS - Force Systems: Basic concepts, Particle equilibrium in 2-D & 3-D; Rigid Body equilibrium; System of Forces, Coplanar Concurrent Forces, Components in Space –Resultant- Moment of Forces and its Application; Couples and Resultant of Force System, Equilibrium of System of Forces, Free body diagrams.

UNIT- II

FRICTION: Types of friction, Limiting friction, Laws of Friction, Static and Dynamic Friction; Motion of Bodies, wedge friction, screw jack & differential screw jack.

UNIT- III

CENTROID AND CENTRE OF GRAVITY: Centroid of Lines, Areas and Volumes from first principle, centroid of composite sections; Centre of Gravity and its implications, Theorem of Pappus

UNIT- IV

AREA MOMENT OF INERTIA: Definition, Moment of inertia of plane sections from first principles, Moment of inertia of standard sections and composite sections; Product of Inertia, Parallel Axis Theorem, Perpendicular Axis Theorem.

MASS MOMENT OF INERTIA: Moment of Inertia of Masses - Transfer Formula for Mass Moments of Inertia – Mass moment of inertia of composite bodies.

UNIT- V

REVIEW OF PARTICLE DYNAMICS: Rectilinear motion, Plane curvilinear motion, Work-kinetic energy, power, Impulse-momentum.

KINETICS OF RIGID BODIES: Basic terms, general principles in dynamics, Types of motion, centre of rotation in plane motion; D’ Alembert’s principle and its applications in plane motion and connected bodies; Kinetics of rigid body rotation.
TEXT BOOKS:
1. Shames and Rao, Engineering Mechanics, Pearson Education

REFERENCE BOOKS:
B. Tech (Mechanical Engineering)

ENGINEERING MATERIALS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A222305</td>
<td>L T P C</td>
<td>CIE SEE</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>2 0 0 2</td>
<td>40 60</td>
<td>100</td>
</tr>
</tbody>
</table>

B.Tech I Year II Semester

Course Outcomes:

At the end of the course, the student will be able to

1. Classify the various materials that will be essential for the mechanical engineering applications and testing for their mechanical properties
2. Understanding the composition and properties of Ferrous and Non-Ferrous Alloys
3. Analyze the manufacturing methods of composite materials for their overall feasibility
4. Evaluate the properties of ceramics and polymers employed in engineering components
5. Understanding the features of nano materials and high entropy alloys for engineering applications

UNIT- I:

INTRODUCTION: Classification of engineering materials, mechanical properties of metals and their testing equipment/procedures, ASTM standards for testing of materials.

UNIT- II:

METALS AND METAL ALLOYS: Classification, composition, properties and usage. Ferrous alloys - steel, cast iron.

NON-FERROUS MATERIALS: Aluminum, Titanium, Copper and their alloys.

UNIT – III:

COMPOSITES: Classification of composites, Types of reinforcements, Properties of composites in comparison with standard materials

MANUFACTURING METHODS: Hand and spray lay - up, injection molding, resin injection, filament winding

UNIT- IV:

CERAMICS: Classification of ceramic materials, Crystal Structure, Properties of Ceramics and applications, Ceramic fabrication techniques.

POLYMERS: Classification, Thermoplastic and Thermosetting Polymers, Characteristics and Applications

UNIT-V:

MATERIALS IN NANO TECHNOLOGY: Applications, Metal nano particles (Iron and copper).

HIGH ENTROPY ALLOYS: High entropy alloys and oxides, Applications

TEXT BOOKS:

REFERENCE BOOKS:

Department of Humanities & Sciences | I B.Tech II Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Hours/Week</th>
<th>Credits</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>A222303</td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

B.Tech I Year II Semester

Course Outcomes:

1. Comprehend the concepts of engineering drawing and CAD software.
2. Conceptualize and draw the projections of points and straight lines.
3. Visualize and project different views of a planes and solids.
4. Evaluate the surfaces of solids developed for further processing in the engineering applications.
5. Generate isometric and corresponding orthographic views of any given component.

UNIT- I:
INTRODUCTION TO CAD: Introduction to CAD software and its importance, standard toolbar/menus and navigation tools used in the software.

UNIT- II:
Principles Of Orthographic Projections: Conventions. Projections of points.
Projections Of Lines: (first angle projection) inclined to both planes (traces and midpoint problem to be excluded).
Implementation Of CAD: Drawing orthographic projections of points and lines using a CAD package.

UNIT – III:
Projections Of The Planes: Projections of regular planes inclined to both the planes.
Projections Of Solids: Projections of regular solids inclined to both the planes (prisms, pyramids, cones and cylinders, Change of potion method only).
Implementation In CAD: Drawing orthographic projection of planes and regular solids using a CAD package.

UNIT- IV:
Sections And Sectional Views of Right Angular Solids: Prism, Cylinder, Pyramid, Cone.
Implementation In CAD: Drawing sectional views of solids and the development of right regular solids using a CAD package.

UNIT-V:
Principles Of Isometric Projection: Isometric scale, isometric views, conventions, isometric views of lines, planes, simple solids. Conversion of orthographic views to isometric views.
Orthographic Projections: conversion of isometric views to orthographic views.
Implementation In Cad: Drawing isometric views from giving orthographic views and vice-versa using a CAD package.
TEXT BOOKS:

REFERENCE BOOKS:

B. Tech I Year II Semester

Course Outcomes:

After completion of the course, the student should be able to

- Develop the application specific codes using python.
- Understand Strings, Lists, Tuples and Dictionaries in Python
- Implement programs using modular approach, file I/O, Python standard library

Week -1 (Installation & Simple Applications)

1. i) Use a web browser to go to the Python website http://python.org. This page contains information about Python and links to Python-related pages, and it gives you the ability to search the Python documentation.
 ii) Start the Python interpreter and type help() to start the online help utility.
2. Start a Python interpreter and use it as a Calculator.

Week - 2: (Mathematical Expressions & I/O Operations)

1. i) Write a program to calculate compound interest when principal, rate and number of periods are given.
 ii) Given coordinates (x1, y1), (x2, y2), find the distance between these two points.
2. Read name, address, email and phone number of a person through keyboard and print the details.

Week – 3 (Conditional statements)

1. Write a Program to find the given number is even or odd.
2. Write a program to find the maximum of three numbers (use ’if-elif-else’ ladder).

Week – 4 (Loop Statements)

1. Write a program to Print the Fibonacci sequence using while loop.
2. Write a program to Print the below triangle using for loop:

 5
 4 4
 3 3 3
 2 2 2
 1 1 1 1
3. Write a program to print all prime numbers in a given interval (using break statement).

Week – 5 (List, Tuple, Dictionary)

1. i) Write a program to illustrate operations of List & Tuple
 ii) Write a program to find common values between two lists.
2. Write a program to perform addition of two matrices.
3. Write a program to read dictionary values from the user and find an element using given key.

Week – 6 (Functions & Modules)

1. Write a function called is_sorted that takes a list as a parameter and return True if the list is sorted in ascending order and False otherwise.
2. Write a function called GCD that takes parameters a and b and return their greatest common divisor.
3. How do you make a module? Give an example of construction of a module using different geometrical shapes and operations on them as its functions.

Week –7(Strings)

1. Write a program to add a comma between the characters. If the given word is 'Apple', it should become 'A,p,p,l,e'
2. Write a program to remove the given word in all the places in a string?
3. Write a function that takes a sentence as an input parameter and replaces the first letter of every word with the corresponding upper case letter and the rest of the letters in the word by corresponding letters in lower case without using a built-in function?

Week –8 (Classes & objects)

1. Write a program to add two complex numbers using classes and objects
2. Write a function called draw_rectangle that takes a Canvas and a Rectangle as arguments and draw a representation of the Rectangle on the Canvas.

Week – 9 (Inheritance)

1. Write a program to demonstrate the various types of Inheritances.

Week – 10(File Concepts)

1. Write a program to merge two given file contents into a third file.
2. Write a program to Read text from a text file, find the word with most number of occurrences
3. Write a program that reads a file file1 and displays the number of words, number of vowels, and blank spaces.

Week – 11(Packages)

1. a) Install NumPy package with pip and explore it.
 b) Illustrate 1-D and 2-D vector processing and slicing.

2. Explore matplotlib with plotpy and visualize the data.

TEXT BOOKS: