B TECH - I YEAR I SEM

C101 Course Name: Mathematics I

<table>
<thead>
<tr>
<th>CO</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>5</td>
</tr>
</tbody>
</table>

CO1
Write the matrix representation of system of linear equations and identify the consistency of the system of equations.

CO2
Find the Eigen values and Eigen vectors of the matrix and discuss the nature of the quadratic form.

CO3
Analyze the convergence of sequence and series.

CO4
Discuss the applications of mean value theorems to the mathematical problems, Evaluation of improper integrals using Beta and Gamma functions.

CO5
Examine the extrema of functions of two variables with/ without constraints.

C102 Course Name: ENGINEERING PHYSICS

<table>
<thead>
<tr>
<th>CO</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>2</td>
</tr>
</tbody>
</table>

CO1
Explain the crystal structure of solids

CO2
Understand various optical phenomena of matter

CO3
Explain the working principle of optical fibers and lasers

CO4
Interpret forced damped harmonic oscillations

CO5
Apply the knowledge of magnetic behavior of materials

C103 Course Name: PHYSICS LAB

<table>
<thead>
<tr>
<th>CO</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>4</td>
</tr>
</tbody>
</table>

CO1
Apply optical phenomena to characterize optical sources and components.

CO2
Characterize semiconductors and semiconductor devices.

CO3
Study transient response of RC circuit.

CO4
Study the properties and resonance mechanisms in mechanical and electrical systems.

CO5
Evaluate the magnetic Induction along the axis of current carrying coil.

C104 Course Name: English

<table>
<thead>
<tr>
<th>CO</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
</tbody>
</table>

CO1
Infer the importance of scientific discoveries in promoting social responsibilities.

CO2
Comprehend the given texts and respond appropriately for technical and professional purposes.

CO3
Communicate confidently and transfer information into various forms
R21 Course Outcomes

<table>
<thead>
<tr>
<th>CO4</th>
<th>Understand the importance of health and nutrition for a better society.</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO5</td>
<td>Present various forms of business writing skills for successful careers.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C105</th>
<th>Course Name: English Language Skills Lab (ELSL)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Reproduce speech sounds and improve fluency in language.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand syllables and consonant clusters for appropriate pronunciation.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Exhibit effective professional skills with rhetoric eloquence.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Deliver enthusiastic and well-practiced presentation.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Learn Task-Based Language Learning (TBLL) through various language learning activities effectively.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C106</th>
<th>Course Name: Programming for Problem Solving – I</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Design Algorithms and Flowcharts for real world applications using ‘C’.</td>
<td>6</td>
</tr>
<tr>
<td>CO2</td>
<td>Know the usage of various operators in Program development.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Design programs involving decision and iteration structures.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Apply the concepts code reusability using Functions.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze various searching and sorting techniques using Arrays.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C107</th>
<th>Course Name: Programming for Problem Solving Lab – I</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Apply the specification of syntax rules for numerical constants and variables, data types.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Know the Usage of various operators and other C constructs.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Design programs on decision and control constructs.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Develop programs on code reusability using functions.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Implement various searching and sorting techniques using arrays.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C108</th>
<th>Course Name: ENGINEERING GRAPHICS & MODELING</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the concepts of engineering drawing of planes, solids and the CAD drawing software.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Applying the principles of engineering graphics while drawing the engineering components.</td>
<td>6</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyse the sectional views for their configurations.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate the surfaces of solids developed for further processing in the engineering applications.</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH - I YEAR II SEM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: Mathematics – II</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C131</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Classify the various types of differential equations of first order and first degree and apply the concepts of differential equations to the real-world problems.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Solve higher order differential equations and apply the concepts of differential equations to the real-world problems.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Find the Laplace Transform of various functions and apply to find the solutions of differential equations.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate the multiple integrals and identify the vector differential operators physically in engineering problems.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluate the line, surface and volume integrals and converting them from one to another by using vector integral theorems.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: CHEMISTRY</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Acquire knowledge of atomic, molecular and electronic changes related to conductivity.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the various processes of treatment of water for both domestic and industrial purpose.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply the knowledge of electrode potentials for the protection of metals from corrosion.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze the major chemical reactions that are used in the synthesis of compounds.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Apply the knowledge of polymers in every day’s life.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: CHEMISTRY Lab</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Determination of parameters like hardness, alkalinity and chloride content in water.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Estimation of rate constant of a reaction from concentration-time relationships.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Determination of physical properties like adsorption, surface tension and viscosity.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Synthesize a small drug molecule and analyze a salt sample.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Calculation of strength of compound using instrumentation techniques.</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

C134
Course Name: Engineering Mechanics
Bloom’s Taxonomy

<table>
<thead>
<tr>
<th>CO</th>
<th>Students who successfully complete this course will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understanding the concepts of engineering mechanics</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the laws of mechanics for various engineering applications</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze the motion of body.</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate performance of various engineering components in terms of their energy capacities</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom’s Taxonomy</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

C135
Course Name: ENGINEERING WORKSHOP
Bloom’s Taxonomy

<table>
<thead>
<tr>
<th>CO</th>
<th>Students who successfully complete this course will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understanding the tools and methods of using to fabricate engineering components</td>
</tr>
<tr>
<td>CO2</td>
<td>Applying the measuring techniques to verify the dimensional accuracy</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluating various methods and trades of workshop in the component building</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom’s Taxonomy</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

C136
Course Name: English Communication Skills Lab (ECSL)
Bloom’s Taxonomy

<table>
<thead>
<tr>
<th>CO</th>
<th>Students who successfully complete this course will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the variants in pronunciation.</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify the diverse purposes of listening and speaking.</td>
</tr>
<tr>
<td>CO3</td>
<td>Discuss ideas in diverse communicative settings.</td>
</tr>
<tr>
<td>CO4</td>
<td>Exhibit increased confidence in public speaking.</td>
</tr>
<tr>
<td>CO5</td>
<td>Display critical thinking, problem solving and decision making skills through GD’s.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom’s Taxonomy</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

C137
Course Name: Programming for Problem Solving - II
Bloom’s Taxonomy

<table>
<thead>
<tr>
<th>CO</th>
<th>Students who successfully complete this course will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Identify various string handling functions in ‘C’.</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop programs with user defined data types.</td>
</tr>
<tr>
<td>CO3</td>
<td>Use Dynamic memory allocation functions with pointers.</td>
</tr>
<tr>
<td>CO4</td>
<td>Distinguish between Stacks and Queues.</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze various Dynamic Data Structures.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom’s Taxonomy</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

C138
Course Name: Programming for Problem Solving Lab- II
Bloom’s Taxonomy

<table>
<thead>
<tr>
<th>CO</th>
<th>Students who successfully complete this course will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Build programs on various string handling functions.</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop applications on user defined data types.</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply dynamic memory allocation through pointers.</td>
</tr>
<tr>
<td>CO4</td>
<td>Implement linear data structures through stacks and queues.</td>
</tr>
<tr>
<td>CO5</td>
<td>Create linked list dynamically through stacks and queues</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bloom’s Taxonomy</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH – II YEAR I SEM

<table>
<thead>
<tr>
<th>C201</th>
<th>Course Name: Professional Communication</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Acquire enhanced personality</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Exhibit appropriate professional etiquette</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Practice team building with strong communication skills</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Develop problem solving skills and decision-making</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Demonstrate effective presentation skills</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C202</th>
<th>Course Name: Numerical Methods and Partial Differential Equations</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Develop skills in solving engineering problems involving Algebraic and transcendental equations.</td>
<td>6</td>
</tr>
<tr>
<td>CO2</td>
<td>Acquires the knowledge of interpolation in predicting future outcomes based on the present knowledge and also to fit different types of Curves.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Know the various types of numerical methods in solving engineering problems.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Classify the nature of second and Higher order partial differential equations and find the solutions of linear and nonlinear PDE.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Apply Partial differential Equations in different engineering problems.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C203</th>
<th>Course Name: Fluid Mechanics</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand different properties of fluid and the relationship between them.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the Continuity equation for one dimensional, two dimensional and three-dimensional flows.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply the Euler’s and Bernoulli’s equations in practical civil engineering problems.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze head losses in pipes and flow between parallel plates.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Demonstrate the boundary layer concepts and its separation.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C204</th>
<th>Course Name: Solid Mechanics -I</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Examine stress – strain, elastic constants and strain energy.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze the shear force and bending moment diagrams of beams and relationship between them.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluate the flexural and shear stresses for various beam cross sections.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Calculate principal stresses and strains using analytical and graphical solutions for the safety using failure theories.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Determine the deflections of beams with various loadings using different methods.</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

C205: Course Name: Engineering Geology

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Classify and compare different rocks and minerals across the construction site.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify and build the knowledge on main and most common igneous, sedimentary and metamorphic rocks encountered by foundations and sites.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Define and interpret the geological structures in the geological maps and cross sections</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the importance of graphical studies and various geophysical methods.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Illustrate the factors which affect the dams, reservoirs and tunnels.</td>
<td>4</td>
</tr>
</tbody>
</table>

C206: Course Name: Surveying & Geomatics

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Identify a detailed surveying at any site by any method.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Ability to use modern survey equipment to measure angles and distances.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Compute the differences in elevation draw and utilize contour plots, volumes for earthwork.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the working principles of modern equipment and its methodologies.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze the basic concept of GPS and its applications.</td>
<td>2</td>
</tr>
</tbody>
</table>

C207: Course Name: Surveying & Geomatics Lab

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Apply the principle of surveying for civil engineering applications.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the knowledge to calculate areas, drawing plans and contour maps using different measuring equipment at field level.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify data collection methods and prepare field notes.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the working principles of survey instruments, measurement errors and corrective measures</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Interpret survey data and compute areas and volumes, levels by different type of equipment and relate the knowledge to the modern equipment and its methodologies.</td>
<td>1</td>
</tr>
</tbody>
</table>

C208: Course Name: Engineering Geology Lab

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>To study the physical properties and identification of minerals referred under the theory.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Describe and identify the rocks referred under the theory.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Illustrate the microscopic study of rocks.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Interpret and draw the sections for geological maps showing tilted beds, faults, unconformities etc.,</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Solve the simple structural geological problems.</td>
<td>6</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C209</th>
<th>Course Name: Environmental Science</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Define and explain the structure and functions of ecosystem, value of biodiversity, threats and conservation of biodiversity.</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Explain the limitations of the resources and impacts of over utilization of all natural resources.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify the sources and effects of environmental pollutions and list the available techniques to control the pollution.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Illustrate the global environmental issues like climate change, ozone hole and can explain the scope of EIA, Environmental Management Plan, environmental audit and list the EIA methods.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Mention the salient features of environmental acts and rules, define the sustainable goals along with measures required for the sustainability.</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH - II YEAR IISEM

<table>
<thead>
<tr>
<th>C231</th>
<th>Course Name: Probability and Statistics</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1</td>
<td>Differentiate among random variables involved in the probability models which are useful for all branches of engineering.</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>Derive relationship among variety of performance measures using probability distributions.</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>Acquire elementary knowledge of parametric and non parametric –tests and understand the use of observing state analysis for predicting future conditions.</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td>Identify and examine situations that generate using problems and able to solve the tests of ANOVA for classified data.</td>
</tr>
<tr>
<td></td>
<td>CO5</td>
<td>Apply proper measurements, Indicators and techniques of Correlation and regression analysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C232</th>
<th>Course Name: Principle of Electrical Engineering</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1</td>
<td>Understand basics of electrical circuits, parameters, and operation of the transformers in the energyconversion process, electromechanical energy conversion,</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>Analyze DC machines</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>Use measuring instruments like voltmeter, ammeter, wattmeter for measuring electrical quantities etc.</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td>Apply the concepts of electrical engineering to design or analyze basic electrical circuits and machinery.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C233</th>
<th>Course Name: Solid Mechanics-II</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1</td>
<td>Design and safety of the shaft subjected to Torsion and bending moment.</td>
</tr>
<tr>
<td></td>
<td>CO2</td>
<td>Calculate the Column capacity for various end conditions due to axial and eccentric loading.</td>
</tr>
<tr>
<td></td>
<td>CO3</td>
<td>Apply the concepts of direct and bending stresses to evaluate the safety of Structures.</td>
</tr>
<tr>
<td></td>
<td>CO4</td>
<td>Evaluate the stresses and strains in thin shells and Thick Cylinders.</td>
</tr>
<tr>
<td></td>
<td>CO5</td>
<td>Determine the stresses due to Unsymmetrical bending of beams and locate the shear Centre.</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name: CONCRETE TECHNOLOGY</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understanding the properties of cements and admixtures.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze the properties of aggregates.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluate the properties of fresh concrete.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse the behavior of hardened concrete and durability of concrete.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Design the concrete mix using IS Code and describe the special concretes.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name: Structural Analysis</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Analyze propped cantilever, fixed beams for external loadings and support settlements.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the concept of Slope deflection, moment distribution method and analysis of continuous beams.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Examine the beams and arches.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze the pin-jointed plane frames.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Draw the influence line diagram for moving loads.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name: Building Materials and Construction</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Identify various building materials and to understand their basic properties.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the minimum standards required to designate and use the materials in construction.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Discuss type metals and finishes used in the construction process.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand modern materials in general construction practice.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Recognize the concept of plastering, pointing and various other building services.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name: COMPUTER AIDED DRAFTING LAB</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Assess the Software with aiding source.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Demonstrate the different modes of commands.</td>
<td>6</td>
</tr>
<tr>
<td>CO3</td>
<td>Draft the plan, Elevation & Sectional Views of the building.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Develop the components of the building</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Replicate the complete detailing of Building with BIM input.</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C238</th>
<th>Course Name: Solid Mechanics Lab</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Demonstrate of materials under impact, hardness, tensile and compressive loads.</td>
<td>6</td>
</tr>
<tr>
<td>CO2</td>
<td>Determine elastic constants by flexural and torsion test.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Illustrate spring constants under various loadings.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the deflection of materials under bending</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Compute basic material properties stress and strain.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C239</th>
<th>Course Name: Gender Sensitization</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Develop awareness about gender discrimination and take measurable steps to counter it.</td>
<td>5</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify the basic dimensions of biological, sociological, psychological and legal aspects of gender.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Acquire knowledge about gendered division of labour in relation to politics and economics.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>To prepare the students against gender violence.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>To prepare the students to work and live together as equals.</td>
<td>6</td>
</tr>
</tbody>
</table>
C301: Managerial Economics and Financial Analysis

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the nature and scope of business economics.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Differentiate various forms of business organization.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify the impact of economic variables on the business firms.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse the demand, supply, production, cost, market structure, pricing aspects.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyse, compare and interpret the financial statement of a company using ratios.</td>
<td>3</td>
</tr>
</tbody>
</table>

C302: HYDRAULICS & HYDRAULIC MACHINERY

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Determine the Froude number for a given flow to differentiate sub-critical, critical, and super-critical flows.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Compute the non-uniform flow depths for gradually and rapid varied flow.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Apply dimensional analysis to predict physical parameters that influence the flow in fluid mechanics and use dimensionless parameters.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Compute efficiencies of different types of turbines.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Use performance curves to predict performance of centrifugal pumps.</td>
<td>5</td>
</tr>
</tbody>
</table>

C304: Design of Reinforced Concrete Structures

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the various design concepts and design a beam under flexure and draw the reinforcement details.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Design the beam under shear and torsion, Calculate the anchorage and development length and check the serviceability requirements for RC structural elements.</td>
<td>6</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze and solve various RC slabs and draw the reinforcement details</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Classify short, long columns and draw the reinforcement details</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Explore the design concept of footing & staircase.</td>
<td>2</td>
</tr>
</tbody>
</table>

C305: Advanced Structural Analysis (PE1)

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Analyze the continuous beams, portal frames by Kani’s method.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Differentiate Static and kinematic Indeterminacy of Trusses by Castiglione’s second theorem.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluate the shear forces and bending moments in Two-Hinged arches and to execute secondary stresses due to rise of</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

| CO4 | Analyze the Multi-storey frames by approximate methods for gravity (vertical) and horizontal loads. | 4 |
| CO5 | Understand the concept of Matrix method for the analysis of continuous beams and Pin jointed plane frames | 2 |

C306 | Course Name: Building Planning & Drawing(PE2) | Bloom’s Taxonomy |
CO	Students who successfully complete this course will be able to:	
CO1	Identify various building components, conventional signs and symbols.	2
CO2	Illustrate the building bye-laws and the principles of planning.	4
CO3	Understand about the building services and safety.	2
CO4	Design and Sketch the plans of various types of buildings and detailing of doors, windows, etc.	6
CO5	Understand the elements of perspective drawing involving simple problems.	2

C307 | Course Name: Air Pollution and Control Methods(PE3) | Bloom’s Taxonomy |
CO	Students who successfully complete this course will be able to:	
CO1	Find the sources, causes & effects of air pollution.	2
CO2	Understand the meteorological components and the plume behavior for atmospheric stability conditions.	2
CO3	Identify the types of equipment to control the particulates at sources.	3
CO4	Minimize the control measures of NOX, SOX and other gaseous emissions.	4
CO5	Demonstrate the factors for siting an industry by examining the air quality standards.	4

C308 | Course Name: Non Conventional Energy Sources(OE1) | Bloom’s Taxonomy |
CO	Students who successfully complete this course will be able to:	
CO1	Realize the importance of renewable energy sources for energy planning.	3
CO2	Understand the value of solar energy potential and exploit the solar energy for real world applications.	2
CO3	Understand the potential of wind energy, types of wind mills, performance characteristics and Betz criteria.	2
CO4	Analyze the potential of both tidal and ocean thermal energies and learn the extraction methods.	4
CO5	Know the potential of Geothermal, biomass energies and learn relevant extraction methods.	2
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C309</th>
<th>Course Name: Fundamentals of Electrical Power Generation and Protection (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the operation of Thermal power station through its schematic diagram.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the arrangement of Hydro electric power station through its components.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand the various components of Nuclear power station</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the operation of Gas and Diesel power station through its schematic diagram.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Understand various power system protection components.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C310</th>
<th>Course Name: Elements of Mechanical Engineering</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the basic concepts of mechanical engineering.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply principles of engineering mechanics in mechanism and machines.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Develop manufacturing methods to produce engineering components.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate alternative designs for the engineering components</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Select a suitable type of automation applicable for any industry</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C311</th>
<th>Course Name: Product Engineering</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Illustrate creativity and study the techniques of innovation</td>
<td>1</td>
</tr>
<tr>
<td>CO2</td>
<td>Assess the evaluation techniques for screening ideas</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Differentiate the IPR-Patents, Design patents, copyright and trade mark and their laws.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Describe the interaction between design, manufacture, quality and testing</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Establish the machining time in various cutting operations; value engineering; GT and concepts of concurrent engineering.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C312</th>
<th>Course Name: Introduction to Microcontrollers (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Describe the architecture of 8051 with its special function registers.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop and analyze the programming concepts of 8051</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Understand the various interfacing techniques pertaining to system design.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Express and infer advanced architectures using ARM Controllers.</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>Course Name: Basic Electronics (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: Basics of Operating Systems (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: Fundamentals of Computer Networks (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: Total Quality Management (OE1)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Name: GEOTECHNICAL ENGINEERING LAB</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C320</th>
<th>Course Name: FLUID MECHANICS & HYDRAULIC MACHINERY LAB</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Examine the calibration of different flow meters.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate flow measuring devices used in pipes, channels and notches.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Determine major and minor losses in pipes.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse the energy equation for problems in pipe flow.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Examine the performance characteristics of turbines and pumps.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C321</th>
<th>Course Name: PERSONALITY DEVELOPMENT AND BEHAVIOURAL SKILLS</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Practice optimistic attitude for an efficient socially viable and multi-faceted personality.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Demonstrate functions of non-verbal communication in formal context.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Build effective individual & team dynamics for professional accomplishments.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze appropriate strategic Interpersonal Skills for productive workplace relationships.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Correspond in multiple contexts, for varied audiences, across genres and modalities.</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH - III YEAR II SEM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: HIGHWAY ENGINEERING</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Summarize the road developments in India from different periods.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the concept of geometric design in real time engineering.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Make use of parameters related to traffic studies.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Design & model the intersections with specific standards.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluate the different pavement design methods using IRC standards.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: Foundation Engineering</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Organize the preparation and programme of soil investigation.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Examine the earth pressure theories and stability of retaining walls.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Evaluate the bearing capacity of soil and allowable settlement.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse the capacity and settlement of pile foundation.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyse the stability of finite and infinite slopes using various methods.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: ENVIRONMENTAL ENGINEERING</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Predict the population by different methods.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Design the filter and settling tanks for water treatment.</td>
<td>6</td>
</tr>
<tr>
<td>CO3</td>
<td>Examine the characteristics of sewage.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyse and design the sewers for sewerage system.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Design different units of sewage treatment plant.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: WATER RESOURCES ENGINEERING</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Describe the components in the hydrologic cycle and interaction among various processes in the hydrologic cycle</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze the flood and its measurement by means of hydrograph.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze the phenomenon of Ground water occurrence by means of aquifers.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Assess the methods of irrigation and its quality with the help of duty</td>
<td>5</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C335</th>
<th>Course Name: CONSTRUCTION ENGINEERING & MANAGEMENT (PE2)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the behavioral aspect of entrepreneurs, various approaches of time management, their strength and weakness.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the concepts of project management Techniques.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Analysis various materials and equipments for construction work.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Examine on different types of contracts and specifications.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Outline the labour regulations and safety in construction.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C336</th>
<th>Course Name: GROUND IMPROVEMENT TECHNIQUES (PE2)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Illustrate the several Ground modification mechanisms</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate the Ground Improvement Techniques through mechanical approach.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Identify the different Hydraulic ground improvement techniques through dewatering techniques.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain the quick settlement techniques through chemical and physical modification.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Distinguish the inclusion and confinement techniques of ground improvement.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C337</th>
<th>Course Name: FINITE ELEMENT METHOD (PE2)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Explain plane stress-plane strain equations and develop displacement functions.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyze one-dimensional problems using stiffness matrix.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Examine the different elements based on continuity and compatibility.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Illustrate quadrilateral elements using nodal points and shape functions.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Discuss the solution techniques for static condition.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C338</th>
<th>Course Name: PRINCIPLES OF ELECTRIC POWER UTILIZATION (OE2)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO5</td>
<td>Design the canals by using standard theories.</td>
<td>6</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>CO</th>
<th>At the end of this course the student will be able to</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand terms and concepts of illumination</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the concepts of different electric lamps and good lighting Practices for artificial lighting systems.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Understands the methods of electric heating and welding</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understands the concepts of different electric traction systems and existing traction system in India.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze the mechanics of train movement</td>
<td>4</td>
</tr>
</tbody>
</table>

C339 Course Name: ENERGY AUDITING AND CONSERVATION (OE2)

<table>
<thead>
<tr>
<th>CO</th>
<th>At the end of this course the student will be able to</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Realize the need for energy auditing and conservation. Get awareness on types of energy audit; represent energy flows and energy consumption in tabular and graphical methods.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand and exploit energy saving opportunities in energy efficient motors and power factor improvement methods.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Learn energy auditing and conservation opportunities in HVAC systems with respect to energy efficient buildings.</td>
<td>1</td>
</tr>
<tr>
<td>CO4</td>
<td>Analyze the economic viability with respect to real world problems using depreciation methods.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Know the check lists for energy conservation in boilers, heat pumps, cooling systems, compressors and fans.</td>
<td>2</td>
</tr>
</tbody>
</table>

C340 Course Name: MAINTENANCE AND SAFETY ENGINEERING(OE1)

<table>
<thead>
<tr>
<th>CO</th>
<th>At the end of this course the student will be able to</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Understand the need for maintenance in an industry and know about Maintenance Management and Control.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Appreciate and implement various types of maintenance.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Know the concept of inventory control in maintenance.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Evaluate the quality and cost of safety and maintenance.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Appraise the concepts of reliability and maintainability with reference to the maintenance of equipment.</td>
<td>5</td>
</tr>
</tbody>
</table>

C341 Course Name: DATABASE MANAGEMENT SYSTEMS (OE2)

<table>
<thead>
<tr>
<th>CO</th>
<th>At the end of this course the student will be able to</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Design Entity-Relationship Model for enterprise level databases.</td>
<td>5</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop the database and provide restricted access to different users of database and formulate the Complex SQL queries.</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Name: NUTRITIONAL & BIOLOGICAL CHEMISTRY (OE2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO3</td>
<td>Analyze various Relational Formal Query Languages and various Normal forms to carry out Schema refinement.</td>
</tr>
<tr>
<td>CO4</td>
<td>Use of suitable Indices and Hashing mechanisms for real time implementation.</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyze various concurrency control protocols and working principles of recovery algorithms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C346</th>
<th>Course Name: NUTRITIONAL & BIOLOGICAL CHEMISTRY (OE2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of this course the student will be able to</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the importance of nutrients and their effects of deficiency in the diet.</td>
</tr>
<tr>
<td>CO2</td>
<td>Classify the carbohydrates in to mono, di and polysaccharides and their importance.</td>
</tr>
<tr>
<td>CO3</td>
<td>Describe the structure and function of proteins, vitamins and nucleic acids.</td>
</tr>
<tr>
<td>CO4</td>
<td>Interpret the uses and effects of antibiotics and Anti tubercular drugs.</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyse the importance and the negative impacts of using pesticides.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C348</th>
<th>Course Name: ENVIRONMENTAL ENGINEERING LAB</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
</tr>
<tr>
<td>CO1</td>
<td>Understand principles and their practical application in water treatment.</td>
</tr>
<tr>
<td>CO2</td>
<td>Determine physical, chemical and biological characteristics of water and wastewater.</td>
</tr>
<tr>
<td>CO3</td>
<td>Determine the optimum dose of coagulant.</td>
</tr>
<tr>
<td>CO4</td>
<td>Estimate the chloride, nitrate and iron content in water.</td>
</tr>
<tr>
<td>CO5</td>
<td>Summarize the solutions using titration, conductivity meter, pH meter, turbidity meter and DO meter.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C349</th>
<th>Course Name: Advanced Communication Skills Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
</tr>
<tr>
<td>CO1</td>
<td>Develop sound communication skills in various situations with the help of enriched vocabulary.</td>
</tr>
<tr>
<td>CO2</td>
<td>Practice reading techniques for a faster and better comprehension.</td>
</tr>
<tr>
<td>CO3</td>
<td>Exhibit strong writing skills to express ideas effectively.</td>
</tr>
<tr>
<td>CO4</td>
<td>Demonstrate effective presentation skills.</td>
</tr>
<tr>
<td>CO5</td>
<td>Use appropriate verbal and non-verbal skills for a successful career.</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

C350

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Name: Quantitative Methods & Logical Reasoning</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>To perform well in various competitive exams and placement drives.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>To solve basic and complex mathematical problems in short time.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>To become strong in Quantitative Aptitude and Reasoning which can be applied for GRE, GATE, GMAT or CAT exam also.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>To develop problem solving skills and analytical abilities, which play a great role in corporate and industry set up.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>To perform well in various competitive exams and placement drives.</td>
<td>4</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH - IV YEAR I SEM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C401</td>
<td>Course Name: DESIGN OF STEEL STRUCTURES</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Classify the types of connections and specifications as per IS: 800-2007.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the provisions of IS: 800-2007 to design tension members.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze and design compression members.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Illustrate behavior of beams and design strengths as per IS code.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Adapt IS code procedures to design welded plate girder.</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: ESTIMATION & COSTING</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Summarize the basic principles and standard methods for working out quantities in estimating.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Determine the earthwork estimate of buildings, roads and canals.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Estimate the rate analysis of the various items of work.</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Understand the process of contracting for roads and buildings.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Evaluate the valuation of buildings and provide practical knowledge of standard specifications of items of building construction.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: PRESTRESSED CONCRETE STRUCTURES (PE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Classify the concepts, principles, types and methods of PSC structures.</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Evaluate the losses of PSC structures.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Analysis and design of PSC slabs and beams using IS:1343 (2012).</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Explain transmission of prestressing force, end block analysis by different methods.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Analyse the stress distribution of composite beams and assess the deflection of beams. Understand the different methods of prestressing.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: EARTHQUAKE ENGINEERING (PE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Quantify mechanical behaviour of earth’s surface, seismic hazards and its effects.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Identify, formulate and solves engineering problems subjected to</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

CO3	Understand the internal parameters of the structures for seismic design source.	2
CO4	Assess the design component or process to meet desired needs within realistic constraints.	5
CO5	Analyze and design the members for earthquake resisting parameters.	4

<table>
<thead>
<tr>
<th>C405</th>
<th>Course Name: GREEN BUILDING TECHNOLOGIES (PE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the Green building concept and focus on approaches that makes building sustainable.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Illustrate Green building assessment and accreditation system.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Able to apply low energy building strategies.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Design green building to improve sustainability of infrastructure.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Classify the economic benefits of green buildings.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C406</th>
<th>Course Name: RAILWAYS, AIRPORTS AND HARBOUR ENGINEERING (PE4)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Define and understand the various components of railways.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand and solve the geometric elements needed for the design of permanent way.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Define, understand, and design the various components of the airport.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Define, understand the planning and requirements of a harbor.</td>
<td>4</td>
</tr>
<tr>
<td>CO5</td>
<td>Improve and Visualize the working of intelligent transportation system.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C407</th>
<th>Course Name: ADVANCED STRUCTURAL DESIGN (PE4)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Analyze and design of cantilever retaining wall.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Apply the provision of IS : 3370-2009 to design water tank.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Compile the design aspects of flat slabs.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Adapt the provision of IRC 21-1987 to class AA loading to design T beam girder.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Summarize the force components and design principles of RCC Chimney.</td>
<td>2</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C408</th>
<th>Course Name: GROUND WATER HYDROLOGY (PE4)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand different types of aquifers and their characteristics</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyse the pumping test data for different aquifers</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Distinguish the surface and subsurface investigation methods of ground water.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Discuss the methods of artificial recharging of ground water.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Explain the control of saline water intrusions.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C409</th>
<th>Course Name: ELECTRICAL & HYBRID VEHICLES (OE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand the components of electric vehicles and fundamentals of electric vehicles.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Summarize the types of batteries and principles of operation of Batteries.</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Perceive the basic principles of electric motors which can be used in electric vehicles</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Restate the transmission of the drive system and the components of the transmission.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Outline the concepts of hybrid vehicles and analyze the performance of hybrid vehicles.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C410</th>
<th>Course Name: ENERGY STORAGE SYSTEMS (OE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Perceive the Electrical Energy Storage Technologies.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Understand the needs of electric energy storage</td>
<td>2</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyze the characteristics and features of energy from various sources.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Classify various types of energy storage and various devices used for the purpose.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Apply the same concepts to real time solutions like electric vehicles, smart Grid and SCADA etc.</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C411</th>
<th>Course Name: BASIC AUTOMOBILE ENGINEERING (OE3)</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understanding the basic structure of an automobile.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Evaluating different cooling and lubrication systems of an automobile</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Analyzing the electrical systems in tandem with ignition systems</td>
<td>4</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>Course</th>
<th>Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO4</td>
<td>Understand various transmission and suspension systems.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Appraise steering and braking systems. Understand emission norms of automobiles.</td>
<td>5</td>
</tr>
</tbody>
</table>

Course Name: MATERIAL SCIENCE AND ENGINEERING (OE3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Understand structure of metals and constitution of alloys.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Appraise equilibrium diagrams of various alloys.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Classify steels, cast irons and their alloys.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Appreciate different heat treatment processes and their influence on properties of metals and alloys. Know different Non-ferrous Metals and Alloys.</td>
<td>5</td>
</tr>
<tr>
<td>CO5</td>
<td>Apply the knowledge of composite and ceramic materials to replace metals and alloys wherever applicable.</td>
<td>3</td>
</tr>
</tbody>
</table>

Course Name: WEB DESIGN (OE3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Create static web pages using HTML</td>
<td>6</td>
</tr>
<tr>
<td>CO2</td>
<td>Design styles for HTML web pages</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Create interactive web pages using Javascript</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>Develop web applications using server side scripting language-PHP</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Develop and analyze web applications with Java Server Pages</td>
<td>4</td>
</tr>
</tbody>
</table>

Course Name: FUNDAMENTALS OF ENTREPRENEURSHIP (OE3)

<table>
<thead>
<tr>
<th>Course</th>
<th>Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>At the end of the course, the student will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Provide awareness about entrepreneurship</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Develop idea generation, creative and innovative skills among students</td>
<td>6</td>
</tr>
<tr>
<td>CO3</td>
<td>Self-motivate the students by making aware of the different opportunities by exploring themselves by discussing the successful growth/failure stories</td>
<td>2</td>
</tr>
<tr>
<td>CO4</td>
<td>Start an enterprise and design business plans are those suitable for funding by considering all dimensions of business.</td>
<td>2</td>
</tr>
</tbody>
</table>

Course Name: CONCRETE & HIGHWAY MATERIALS LAB

<table>
<thead>
<tr>
<th>Course</th>
<th>Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>CO</th>
<th>Course Outcomes</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO1</td>
<td>Examine the experimental strength of aggregate materials as per codal provisions.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>Compute the properties of bituminous materials.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Determine the properties of cement by conducting the test.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Define the workability of fresh concrete by conducting tests.</td>
<td>1</td>
</tr>
<tr>
<td>CO5</td>
<td>Estimate the strength of hardened concrete by conducting destructive and non destructive testing.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C421</th>
<th>Course Name: COMPUTATIONAL LAB</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Encalcate with the usage of recent software’s and its applications in the field of civil engineering</td>
<td>3</td>
</tr>
<tr>
<td>CO2</td>
<td>Analyse the Beam and Slab using Staad Pro software.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>Assess the frame using the Staad Pro.</td>
<td>5</td>
</tr>
<tr>
<td>CO4</td>
<td>Interpret the slope stability by using Geo5.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>Assess the settlement of footing.</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C422</th>
<th>Course Name: INDUSTRIAL ORIENTED MINI PROJECT</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Interpret the literature and develop solutions for framing problem statement.</td>
<td>5</td>
</tr>
<tr>
<td>CO2</td>
<td>Select software techniques for identifying problems.</td>
<td>3</td>
</tr>
<tr>
<td>CO3</td>
<td>Analysis and test the modules of planned project.</td>
<td>4</td>
</tr>
<tr>
<td>CO4</td>
<td>Design technical report and deliver presentations.</td>
<td>6</td>
</tr>
<tr>
<td>CO5</td>
<td>Apply engineering and management principles to achieve project goals.</td>
<td>3</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

B TECH - IV YEAR II SEM

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: REHABILITATION AND RETROFITTING OF STRUCTURES</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C431</td>
<td>CO Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1 Illustrate the importance of inspection and maintenance.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CO2 Summarize the Impacts of corrosion and fire damage on structures.</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CO3 Identify the damage assessment and testing of structural components.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CO4 Understand the materials and techniques needed for repairs.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CO5 Examine the failures of the structures and health monitoring with Optimization techniques.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: REMOTE SENSING AND GIS</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C432</td>
<td>CO Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1 Understand the concepts of Photogrammetry and compute the heights of the objects using parallax.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CO2 Able to comprehend the energy interactions with earth surface features, spectral properties of water bodies.</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>CO3 Understand the basic concept of GIS and its applications; know different types of data representation in GIS.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO4 Illustrate spatial and non-spatial data features in GIS and understand the map projections and coordinates systems.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CO5 Remote sensing gives the provision of understanding about water resources management and monitoring.</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name: TECHNICAL SEMINAR</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C433</td>
<td>CO Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CO1 CO1: Demonstrate the skills in identifying, analysing, and presenting a research topic.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO2 CO2: Demonstrate the quality of knowledge gained from the literature survey on recent technologies.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO3 CO3: Demonstrate the skills developed to communicate effectively on engineering activities with the engineering community.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CO4 CO4: Demonstrate ability to effectively manage time in presentation skills.</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>CO5 CO5: Design a technical report with the principal of ethics.</td>
<td>6</td>
</tr>
</tbody>
</table>
R21 Course Outcomes

<table>
<thead>
<tr>
<th>C434</th>
<th>Course Name: COMPREHENSIVE VIVA VOCE</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>Explain comprehensively to answer questions from all the courses.</td>
<td>2</td>
</tr>
<tr>
<td>CO2</td>
<td>Test Oral Presentation skills by answering questions in a precise and concise manner.</td>
<td>5</td>
</tr>
<tr>
<td>CO3</td>
<td>Build confidence and interpersonal skills.</td>
<td>3</td>
</tr>
<tr>
<td>CO4</td>
<td>Support the students to face interview both in the academic and the industrial sector.</td>
<td>2</td>
</tr>
<tr>
<td>CO5</td>
<td>Improve placements and better performers in their future.</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C435</th>
<th>Course Name: MAJOR PROJECT</th>
<th>Bloom’s Taxonomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>Students who successfully complete this course will be able to:</td>
<td></td>
</tr>
<tr>
<td>CO1</td>
<td>CO1: Identity, Analyse and apply suitable current techniques and tools to solve a problem in the civil engineering domain and societal issues.</td>
<td>4</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2: Function effectively in teams to accomplish a common goal.</td>
<td>4</td>
</tr>
<tr>
<td>CO3</td>
<td>CO3: Organise the technical report writing and communication effectively.</td>
<td>6</td>
</tr>
<tr>
<td>CO4</td>
<td>CO4: Extend in lifelong activity.</td>
<td>3</td>
</tr>
<tr>
<td>CO5</td>
<td>CO5: Define and analyse a problem to assess health, safety and legal issues.</td>
<td>4</td>
</tr>
</tbody>
</table>